Search results for "CROSS-VALIDATION"
showing 10 items of 50 documents
Modelling residuals dependence in dynamic life tables: A geostatistical approach
2008
The problem of modelling dynamic mortality tables is considered. In this context, the influence of age on data graduation needs to be properly assessed through a dynamic model, as mortality progresses over the years. After detrending the raw data, the residuals dependence structure is analysed, by considering them as a realisation of a homogeneous Gaussian random field defined on R × R. This setting allows for the implementation of geostatistical techniques for the estimation of the dependence and further interpolation in the domain of interest. In particular, a complex form of interaction between age and time is considered, by taking into account a zonally anisotropic component embedded in…
Mass Spectrometry Imaging Differentiates Chromophobe Renal Cell Carcinoma and Renal Oncocytoma with High Accuracy
2020
Background: While subtyping of the majority of malignant chromophobe renal cell carcinoma (cRCC) and benign renal oncocytoma (rO) is possible on morphology alone, additional histochemical, immunohistochemical or molecular investigations are required in a subset of cases. As currently used histochemical and immunohistological stains as well as genetic aberrations show considerable overlap in both tumors, additional techniques are required for differential diagnostics. Mass spectrometry imaging (MSI) combining the detection of multiple peptides with information about their localization in tissue may be a suitable technology to overcome this diagnostic challenge. Patients and Methods: Formalin…
Predicting ACL Injury Using Machine Learning on Data From an Extensive Screening Test Battery of 880 Female Elite Athletes
2022
Background: Injury risk prediction is an emerging field in which more research is needed to recognize the best practices for accurate injury risk assessment. Important issues related to predictive machine learning need to be considered, for example, to avoid overinterpreting the observed prediction performance. Purpose: To carefully investigate the predictive potential of multiple predictive machine learning methods on a large set of risk factor data for anterior cruciate ligament (ACL) injury; the proposed approach takes into account the effect of chance and random variations in prediction performance. Study Design: Case-control study; Level of evidence, 3. Methods: The authors used 3-dime…
Feature selection on a dataset of protein families: from exploratory data analysis to statistical variable importance
2016
Proteins are characterized by several typologies of features (structural, geometrical, energy). Most of these features are expected to be similar within a protein family. We are interested to detect which features can identify proteins that belong to a family, as well as to define the boundaries among families. Some features are redundant: they could generate noise in identifying which variables are essential as a fingerprint and, consequently, if they are related or not to a function of a protein family. We defined an original approach to analyze protein features for defining their relationships and peculiarities within protein families. A multistep approach has been mainly performed in R …
From Vivaldi to Beatles and back: predicting lateralized brain responses to music.
2013
We aimed at predicting the temporal evolution of brain activity in naturalistic music listening conditions using a combination of neuroimaging and acoustic feature extraction. Participants were scanned using functional Magnetic Resonance Imaging (fMRI) while listening to two musical medleys, including pieces from various genres with and without lyrics. Regression models were built to predict voxel-wise brain activations which were then tested in a cross-validation setting in order to evaluate the robustness of the hence created models across stimuli. To further assess the generalizability of the models we extended the cross-validation procedure by including another dataset, which comprised …
Validation procedures in radiological diagnostic models. Neural network and logistic regression
1999
The objective of this paper is to compare the performance of two predictive radiological models, logistic regression (LR) and neural network (NN), with five different resampling methods. One hundred and sixty-seven patients with proven calvarial lesions as the only known disease were enrolled. Clinical and CT data were used for LR and NN models. Both models were developed with cross validation, leave-one-out and three different bootstrap algorithms. The final results of each model were compared with error rate and the area under receiver operating characteristic curves (Az). The neural network obtained statistically higher Az than LR with cross validation. The remaining resampling validatio…
Probabilistic cross-validation estimators for Gaussian process regression
2018
Gaussian Processes (GPs) are state-of-the-art tools for regression. Inference of GP hyperparameters is typically done by maximizing the marginal log-likelihood (ML). If the data truly follows the GP model, using the ML approach is optimal and computationally efficient. Unfortunately very often this is not case and suboptimal results are obtained in terms of prediction error. Alternative procedures such as cross-validation (CV) schemes are often employed instead, but they usually incur in high computational costs. We propose a probabilistic version of CV (PCV) based on two different model pieces in order to reduce the dependence on a specific model choice. PCV presents the benefits from both…
Prediction of organic carbon and total nitrogen contents in organic wastes and their composts by Infrared spectroscopy and partial least square regre…
2017
Middle and near infrared (MIR and NIR) were employed to determine organic carbon (OC) and total nitrogen (TN) in different soil organic amendments including wastes, composts and mixtures of composts and organic wastes. Prediction models based on partial least squares (PLS) regression from the spectra of untreated samples were built. Different spectra preprocessing strategies were adopted and the best number of latent variable was evaluated using leave-one-out cross-validation. Attenuated total reflectance (PLS-ATR-MIR) and diffuse reflectance (PLS-DR-NIR) models were built and evaluated from root mean square error of cross validation and prediction (RMSECV and RMSEP), coefficients of determ…
Spatiotemporal modeling and prediction of solar radiation
2003
[1] The radiation budget in the Earth-atmosphere system is what drives Earth's climate, and thus measurements of this balance are needed to improve our knowledge of Earth's climate and climate change. In the present paper we focus on the analysis of the surface shortwave radiation budget (SSRB), which is the amount of energy in the solar region of the electromagnetic spectrum (0.2–4.0 μm) absorbed at the surface. The SSRB has to be modeled from the surface to the top of the atmosphere, jointly with information about the state of the atmosphere and the surface. These data come from satellites orbiting the Earth and are often missing or disturbed. Its interest is not only at global scales; ra…
Cross-validation of the SCL-27: a short psychometric screening instrument for chronic pain patients
2001
We constructed a short multidimensional screening instrument for chronic pain patients based on the items contained in the Symptom Check List-90-Revised (SCL-90-R). The proposed dimensional structure of the SCL-90-R was recently shown to be irreproducible in chronic pain patients. As a consequence, the use of the Global Severity Index (GSI) was recommended, although it did not capture all information contained in the many items of the SCL-90-R. Based on an exploratory factor analysis, a six-dimensional structure using 27 items from the SCL-90-R was explored utilizing the data of 2780 chronic pain patients. A short form was prospectively tested on 581 patients in the same setting. Criteria f…