Search results for "CSD-C2"
showing 7 items of 7 documents
Kinetics of rat CSD-C2 binding to H3.3 RNA
2017
Cold-shock domain containing protein C2 (CSD-C2; also known as PIPPin) is an RNA-binding protein conserved in the evolution that interacts with the 3’-untranslated region (3’-UTR) of rat H1.0 and H3.3 histone messengers. Biolayer interferometry (BLI) is a technique that measures changes in an interference pattern generated from visible light, reflected from an optical layer, and a biolayer which contains molecules of interest. In this study, we used the BLI methodology in order to analyze and describe the binding properties of CSD-C2 and the mRNA encoding the rat brain histone protein H3.3. Recombinant CSD-C2 was incubated with in vitro transcribed, and biotinylated H3.3 RNA fragments bound…
Identification in the rat brain of a set of nuclear proteins interacting with H1° mRNA
2012
Synthesis of H1° histone, in the developing rat brain, is also regulated at post-transcriptional level. Regulation of RNA metabolism depends on a series of RNA-binding proteins (RBPs); therefore, we searched for H1° mRNA-interacting proteins. With this aim, we used in vitro transcribed, biotinylated H1° RNA as bait to isolate, by a chromatographic approach, proteins which interact with this mRNA, in the nuclei of brain cells. Abundant RBPs, such as heterogeneous nuclear ribonucleoprotein (hnRNP) K and hnRNP A1, and molecular chaperones (heat shock cognate 70, Hsc70) were identified by mass spectrometry. Western blot analysis also revealed the presence of cold shock domain-containing protein…
Developing rat brain as well as cultured astrocytes contain H1° mRNA-protein complexes
2015
RNA-binding proteins (RBPs) regulate intracellular transport, pre-localization, stability, and translation of mRNAs [1]. We previously identified a set of proteins which interact with mRNAs encoding H1° and H3.3 histones [2-5]. All these proteins are probably part of a ribonucleoprotein particle [6]. Here we report the results of a more detailed study on the expression and intracellular localization of some of these RBPs, such as hnRNP K and A1, and Hsc70, during rat brain development and in cultured rat astrocytes. We also investigated the presence in the complexes of PIPPin/CSD-C2 protein. Affinity chromatography was performed as already described [6]. Preparation of total lysates and cel…
Expression and intracellular localization of H1° mRNA-containing complexes in developing rat brain and astrocytes
2015
INTRODUCTION: Post-transcriptional regulation of gene expression relies on RNA-binding proteins (RBPs), which regulate intracellular transport, stability, and translation of mRNAs [1]. We previously identified a set of proteins which interact with mRNAs encoding H1° and H3.3 histones [2-5]. All these proteins are probably part of a ribonucleoprotein particle [6]. Here we report more details on the expression and intracellular localization of some of these RBPs, during rat brain development and in isolated rat astrocytes. METHODS: Affinity chromatography was performed as already described [6]. Preparation of total lysates and cellular sub-fractions was done as reported in [3]. Possible co-lo…
RNA-binding CSD-C2 protein and its interactors in nerve cell differentiation
2010
Rat PIPPin is probably part of a large complex of RNA-binding proteins
2012
Throughout rat brain development, expression of histones variants is mainly regulated at the post-transcriptional level. We previously cloned two cDNAs encoding, respectively, PIPPin (or CSD-C2), a brain-enriched protein able to bind the 3’end of H1° and H3.3 mRNAs, and LPI (longer isoform of PEP-19). Both PEP-19 and LPI are brain-specific. By western blot, we found that PIPPin expression in PC12 cells is enhanced by NGF-induced differentiation. We investigated the RNA-binding properties of the three proteins using their 6 histidine-tagged recombinant fusions and found that they all bind H1° and H3.3 RNAs. Since PEP-19 and LPI are camstatins, we also analyzed whether calmodulin could interf…