Search results for "CYANOBACTERIA"

showing 10 items of 130 documents

2020

Hsp70 proteins and their Hsp40 co-chaperones are essential components of cellular chaperone networks in both prokaryotes and eukaryotes. Here, we performed a genetic analysis to define the protein domains required for the key functions of the major Hsp40/DnaJ protein Sll0897 of the cyanobacterium Synechocystis sp. PCC6803. The expression of the N-terminally located J- and G/F-domains is essential and sufficient for the proteins' fundamental in vivo functions, whereas the presence of the full-length protein, containing the C-terminal substrate-binding domains, is crucial under stress conditions.

0301 basic medicineCyanobacteriabiologyChemistryProtein domainSynechocystisbiology.organism_classificationDNAJ ProteinGenetic analysisGeneral Biochemistry Genetics and Molecular BiologyHsp70Cell biology03 medical and health sciences030104 developmental biology0302 clinical medicine030220 oncology & carcinogenesisChaperone (protein)biology.proteinViability assayFEBS Open Bio
researchProduct

Expanding the toolbox for Synechocystis sp. PCC 6803 : validation of replicative vectors and characterization of a novel set of promoters

2018

Cyanobacteria are promising ‘low-cost’ cell factories since they have minimal nutritional requirements, high metabolic plasticity and can use sunlight and CO2 as energy and carbon sources. The unicellular Synechocystis sp. PCC 6803, already considered the ‘green’ Escherichia coli, is the best studied cyanobacterium but to be used as an efficient and robust photoautotrophic chassis it requires a customized and well-characterized toolbox. In this context, we evaluated the possibility of using three self-replicative vectors from the Standard European Vector Architecture (SEVA) repository to transform Synechocystis. Our results demonstrated that the presence of the plasmid does not lead to an e…

0301 basic medicineCyanobacteriapSEVA plasmids030106 microbiologyBiomedical EngineeringHeterologouspromotersBioengineeringContext (language use)Computational biologymedicine.disease_causecyanobacteriaBiomaterials03 medical and health sciencesPlasmidmedicineEscherichia coliGeneQH426synthetic toolboxbiologyChemistrySynechocystisSynechocystisPromoterbiology.organism_classificationAgricultural and Biological Sciences (miscellaneous)3. Good health030104 developmental biologyBiotechnologyResearch Article
researchProduct

Analytical insight into degradation processes of aminopolyphosphonates as potential factors that induce cyanobacterial blooms

2017

Aminopolyphosphonates (AAPs) are commonly used industrial complexones of metal ions, which upon the action of biotic and abiotic factors undergo a breakdown and release their substructures. Despite the low toxicity of AAPs towards vertebrates, products of their transformations, especially those that contain phosphorus and nitrogen, can affect algal communities. To verify whether such chemical entities are present in water ecosystems, much effort has been made in developing fast, inexpensive, and reliable methods for analyzing phosphonates. However, unfortunately, the methods described thus far require time-consuming sample pretreatment and offer relatively high values of the limit of detect…

0301 basic medicineHealth Toxicology and MutagenesisMetal ions in aqueous solutionOrganophosphonatesFresh Water010501 environmental sciencesCyanobacteria01 natural sciencesChloride03 medical and health scienceschemistry.chemical_compoundSpecies SpecificitymedicineEnvironmental ChemistryOrganic chemistryDerivatization0105 earth and related environmental sciencesCyanobacterial biodegradationPollutant transformationGeneral MedicineEutrophicationPollutionDTPMPPhosphonateDecompositionAminopolyphosphonates030104 developmental biologychemistryWater pollutionGlycineOrganophosphonatesAnalytical determinationHPLCWater Pollutants Chemicalmedicine.drugResearch ArticleEnvironmental Science and Pollution Research International
researchProduct

Novel Synechococcus Genomes Reconstructed from Freshwater Reservoirs

2017

Freshwater picocyanobacteria including Synechococcus remain poorly studied at the genomic level, compared to their marine representatives. Here, using a metagenomic assembly approach we discovered two novel Synechococcus sp. genomes from two freshwater reservoirs Tous and Lake Lanier, both sharing 96% average nucleotide identity and displaying high abundance levels in these two lakes located at similar altitudes and temperate latitudes. These new genomes have the smallest estimated size (2.2 Mb) and average intergenic spacer length (20 bp) of any previously sequenced freshwater Synechococcus, which may contribute to their success in oligotrophic freshwater systems. Fluorescent in situ hybri…

0301 basic medicineMicrobiology (medical)Cyanobacteria030106 microbiologylcsh:QR1-502medicine.disease_causeMicrobiologyGenomelcsh:Microbiology579 - Microbiología03 medical and health sciencesBotanyGene clustermedicineOriginal ResearchSynechococcusmetagenomicsabundancebiologyfungiRuBisCOProtistsmallest estimated sizebiology.organism_classificationSynechococcusCarboxysomeMetagenomicsbiology.proteinbacteriapicocyanobacteriafreshwater reservoirsFrontiers in Microbiology
researchProduct

Discovery of a Pederin Family Compound in a Nonsymbiotic Bloom-Forming Cyanobacterium

2018

The pederin family includes a number of bioactive compounds isolated from symbiotic organisms of diverse evolutionary origin. Pederin is linked to beetle-induced dermatitis in humans, and pederin family members possess potent antitumor activity caused by selective inhibition of the eukaryotic ribosome. Their biosynthesis is accomplished by a polyketide/nonribosomal peptide synthetase machinery employing an unusual trans-acyltransferase mechanism. Here, we report a novel pederin type compound, cusperin, from the free-living cyanobacterium Cuspidothrix issatschenkoi (earlier Aphanizomenon). The chemical structure of cusperin is similar to that of nosperin recently isolated from the lichen cya…

0301 basic medicineNostocSpectrometry Mass Electrospray IonizationMagnetic Resonance SpectroscopyGENE-CLUSTERPAEDERUSpederinsPederinCyanobacteriaBiochemistry03 medical and health scienceschemistry.chemical_compoundPolyketideBiosynthesisNonribosomal peptideTandem Mass SpectrometryCHEMISTRYGene clusterBACTERIAL SYMBIONTBIOSYNTHESISPeptide SynthasesSymbiosissyanobakteeritta116chemistry.chemical_classificationbioactive compoundsbiologybioaktiiviset yhdisteetta1182General Medicinebiology.organism_classificationluonnonaineetnaturally occurring substancesamidesPOLYKETIDE SYNTHASES030104 developmental biologychemistryBiochemistryGenes BacterialMultigene FamilyPolyketidesamiditCyanobiontMolecular Medicine1182 Biochemistry cell and molecular biologyEukaryotic Ribosome
researchProduct

The swinholide biosynthesis gene cluster from a terrestrial cyanobacterium, Nostoc sp. strain UHCC 0450

2017

ABSTRACT Swinholides are 42-carbon ring polyketides with a 2-fold axis of symmetry. They are potent cytotoxins that disrupt the actin cytoskeleton. Swinholides were discovered from the marine sponge Theonella sp. and were long suspected to be produced by symbiotic bacteria. Misakinolide, a structural variant of swinholide, was recently demonstrated to be the product of a symbiotic heterotrophic proteobacterium. Here, we report the production of swinholide A by an axenic strain of the terrestrial cyanobacterium Nostoc sp. strain UHCC 0450. We located the 85-kb trans -AT polyketide synthase (PKS) swinholide biosynthesis gene cluster from a draft genome of Nostoc sp. UHCC 0450. The swinholide …

0301 basic medicinemarine environmentterrestrial environmentDIVERSITYcyanobacteria01 natural sciencesApplied Microbiology and BiotechnologyBiochemistryTrans-AT PKSMARINE CYANOBACTERIAGene clusterEnvironmental MicrobiologyskeletonSPONGE THEONELLA-SWINHOEISpotlightAxenicNostocgene transfertoxinSwinholide1183 Plant biology microbiology virologyPhylogenychemistry.chemical_classificationEcologybiologyAnabaena sp.ChemistryAnabaenaHorizontal gene transferKetonesbacteriumenzyme activityphylogeneticsINSIGHTSBiochemistryMultigene Familyhorizontal gene transferscytophycinScandium compoundspolyketidesBiotechnologyNostoctrans-AT PKSScytophycinNONRIBOSOMAL PEPTIDEBiosynthesisCyanobacteriaswinholideCYTOTOXIC DIMERIC MACROLIDES03 medical and health sciencesPolyketideBacterial ProteinsNonribosomal peptidecyanobacteriumPolyketide synthaseProteobacteriaCONGENERSCandidatus Entotheonellabovine spongiform encephalopathygeneNostoc sp.Bacteriacatalysis010405 organic chemistryProteinsSequence Analysis DNAbiology.organism_classificationActin cytoskeletonAnabaenaEVOLUTION"Candidatus Entotheonella"0104 chemical sciencesenzymeNATURAL-PRODUCT DISCOVERY030104 developmental biologyGenesPolyketidesbiology.proteingene expressionbacteria“Candidatus Entotheonella”Theonella sp.Marine ToxinsPolyketide SynthasesFood Sciencecatalyst
researchProduct

Critical appraisal of tubular putative eumetazoans from the Ediacaran Weng'an Doushantuo biota

2015

Molecular clock analyses estimate that crown-group animals began diversifying hundreds of millions of years before the start of the Cambrian period. However, the fossil record has not yielded unequivocal evidence for animals during this interval. Some of the most promising candidates for Precambrian animals occur in the Weng'an biota of South China, including a suite of tubular fossils assigned to Sinocyclocyclicus, Ramitubus, Crassitubus and Quadratitubus, that have been interpreted as soft-bodied eumetazoans comparable to tabulate corals. Here, we present new insights into the anatomy, original composition and phylogenetic affinities of these taxa based on data from synchrotron radiation …

1001ChinaFossils70Eukaryota610 Medicine & healthDoushantuo1100 General Agricultural and Biological Sciences144CyanobacteriaInvertebrates170 Ethics2300 General Environmental ScienceEdiacaran1300 General Biochemistry Genetics and Molecular Biologyexceptional fossilization2400 General Immunology and Microbiologytubular fossilsAnimals10237 Institute of Biomedical EngineeringDoushantuo; Ediacaran; Tubular fossils; Exceptional fossilizationResearch ArticlesBody PatterningProceedings of the Royal Society B: Biological Sciences
researchProduct

Direct pathway cloning and expression of the radiosumin biosynthetic gene cluster

2023

Radiosumins are a structurally diverse family of low molecular weight natural products that are produced by cyanobacteria and exhibit potent serine protease inhibition. Members of this family are dipeptides characterized by the presence of two similar non-proteinogenic amino acids. Here we used a comparative bioinformatic analysis to identify radiosumin biosynthetic gene clusters from the genomes of 13 filamentous cyanobacteria. We used direct pathway cloning to capture and express the entire 16.8 kb radiosumin biosynthetic gene cluster from Dolichospermum planctonicum UHCC 0167 in Escherichia coli. Bioinformatic analysis demonstrates that radiosumins represent a new group of chorismate-der…

11832 Microbiology and virologyIdentificationDiversityOrganic ChemistryBacillus-subtilis116 Chemical sciencesFresh-waterDNAProtease inhibitorsCyanobacteriaBiochemistryQualityNonribosomal peptidegeneettinen monimuotoisuusNatural-productsTrypsin-inhibitorPhysical and Theoretical Chemistrysyanobakteerit
researchProduct

Does the potentially toxic cyanobacterium Microcystis exist in the soda lakes of East Africa?

2011

Presently, the food chains of the famous saline alkaline flamingo-lakes of East Africa are the focus of intense scientific discussion as the lakes host toxic cyanobacteria, which when consumed by Lesser Flamingos, weaken the birds and therefore make them susceptible to attacks by infective diseases. The distribution, genetic and toxicological aspects of Microcystis in Kenya has been studied extensively. Although there are reports on the occurrence of Microcystis in Kenya’s hypersaline alkaline lakes, they have not been confirmed. Our investigations carried out over a 10-year period in about 50 inland waters showed that Microcystis occurs exclusively in freshwaters, but never in the hypersal…

Anabaenopsis East Africa Lesser Flamingo Microcystis Soda lakes Toxic cyanobacteria
researchProduct

Alternative Biosynthetic Starter Units Enhance the Structural Diversity of Cyanobacterial Lipopeptides

2019

Puwainaphycins (PUWs) and minutissamides (MINs) are structurally analogous cyclic lipopeptides possessing cytotoxic activity. Both types of compound exhibit high structural variability, particularly in the fatty acid (FA) moiety. Although a biosynthetic gene cluster responsible for synthesis of several PUW variants has been proposed in a cyanobacterial strain, the genetic background for MINs remains unexplored. Herein, we report PUW/MIN biosynthetic gene clusters and structural variants from six cyanobacterial strains. Comparison of biosynthetic gene clusters indicates a common origin of the PUW/MIN hybrid nonribosomal peptide synthetase and polyketide synthase. Surprisingly, the biosynthet…

Antifungal AgentsGenetics and Molecular BiologyCyanobacteria01 natural sciencesApplied Microbiology and BiotechnologycyanobacteriaPeptides Cyclicbiosynteesi03 medical and health scienceschemistry.chemical_compoundLipopeptidesBiosynthesisAnti-Infective AgentsBacterial ProteinsNonribosomal peptidePolyketide synthaseGene clusterPeptide SynthasessyanobakteeritGene030304 developmental biology2. Zero hungerchemistry.chemical_classification0303 health sciencesNatural productEcologybiology010405 organic chemistryLipopeptideAnabaenaYeast0104 chemical scienceschemistryBiochemistrypeptiditGenes BacterialMultigene Familybiology.proteinpeptidesbiosynthesisPolyketide SynthasesFood ScienceBiotechnology
researchProduct