Search results for "CaCu3Ti4O12"

showing 1 items of 1 documents

Enhancement of calcium copper titanium oxide photoelectrochemical performance using boron nitride nanosheets

2020

International audience; Photoelectrochemical water splitting under visible light has attracted attention for renewable hydrogen production. Despite prevalent investigations, many challenges still hindered an efficient energy conversion, such as enhancing the reaction efficiency in visible light. Thus controlling the photoelectrode materials is an essential step in designing new materials for water splitting. CaCu3Ti4O12 (CCTO) has received great attention as photocatalyst under solar light due to its combined band gap as result of the presence in its structure of TiO2 active in UV light and CuO active under visible light. In this work, a cubic CCTO with different amount of exfoliated hexago…

Materials scienceDiffuse reflectance infrared fourier transformBand gapGeneral Chemical EngineeringCaCu3Ti4O1202 engineering and technology010402 general chemistry7. Clean energy01 natural sciencesIndustrial and Manufacturing Engineeringchemistry.chemical_compoundsymbols.namesake[CHIM.GENI]Chemical Sciences/Chemical engineeringEnvironmental ChemistryWater splittingPhotoelectrochemicalVisible lightGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesDielectric spectroscopychemistryChemical engineeringBoron nitridePhotocatalysissymbolsHexagonal boron nitride nanosheets (h-BN)Water splitting0210 nano-technologyRaman spectroscopyVisible spectrumChemical Engineering Journal
researchProduct