Search results for "Calculation"

showing 4 items of 594 documents

Structural distortions in homoleptic (RE)4A (E = O, S, Se; A = C, Si, Ge, Sn): Implications for the CVD of tin sulfides

2001

The structures of Sn(SBut)4 and Sn(SCy)4 have been determined and adopt S4 and D2 conformations respectively; the anion [(PhS)Sn3]−, as its Ph4P+ salt, has a structure approaching Cs symmetry. In all three compounds, there are large variations in the ∠S–Sn–S within the same molecule, which have been rationalised in terms of the C–S–Sn–S–C conformations. For Sn(SR)4, the ∠S–Sn–S increases as the conformations change from trans, trans to trans, gauche and gauche, gauche, as the number of eclipsed lone pairs decreases and this rationale is shown to be applicable to a variety of A(ER)4 (A = C, Si, Ge, Sn; E = O, S, Se) and related [Mo(SR)4, Ga(SR)4−] systems. AM1 calculations have been used to …

tin sulfidesChemistryStereochemistryMössbauer spectroscopychemistry.chemical_elementGeneral ChemistryAM1 calculationsDecompositionIonCrystalchemistry.chemical_compoundCrystallographychemical vapour depositionSettore CHIM/03 - Chimica Generale E InorganicaMoleculeThin filmHomolepticTinLone pairX-ray crystallography
researchProduct

Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for dark matter mediators in visible and invisible decay channels and ca…

2019

Physics of the Dark Universe 26, 100377 (2019). doi:10.1016/j.dark.2019.100377

transverse momentum: missing-energyscale: TeVAtomic01 natural sciencesParticle and Plasma Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [p p]TeV [scale]010303 astronomy & astrophysicsPhysicsLarge Hadron ColliderCMSPhysicsaxial-vectorMonte Carlo [numerical calculations]ATLASCERN LHC Collinterpretation of experimentsrelic density [dark matter]colliding beams [p p]numerical calculations: Monte CarloAstronomical and Space SciencessignatureParticle physicsp p: scatteringDark matterlepton: couplingdark matter: production5300103 physical sciencesThermalNuclearddc:530Pseudovector010308 nuclear & particles physicsdark matter: relic densityMolecularAstronomy and Astrophysicsmediation [dark matter]dark matter: mediationproduction [dark matter]Space and Planetary Sciencemissing-energy [transverse momentum][PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]invisible decaycoupling [lepton][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]p p: colliding beamsvectorLeptonexperimental results
researchProduct

An experimental and theoretical study of a heptacoordinated tungsten(VI) complex of a noninnocent phenylenediamine bis(phenolate) ligand

2018

Abstract [W(N2O2)(HN2O2)] (H4N2O2 = N,N′-bis(3,5-di-tert-butyl-2-hydroxyphenyl)-1,2-phenylenediamine) with a noninnocent ligand was formed by reaction of the alkoxide precursor [W(eg)3] (eg = the 1,2-ethanediolate dianion) with two equivalents of ligand. The phenol groups on one of the ligands are completely deprotonated and the ligand coordinates in a tetradentate fashion, whereas the other ligand is tridentate with one phenol having an intact OH group. The molecular structure, magnetic measurements, EPR spectroscopy, and density functional theory calculations indicate that the complex is a stable radical with the odd electron situated on the tridentate amidophenoxide ligand. The formal ox…

tungstenDFT calculations010402 general chemistry01 natural scienceslaw.inventionInorganic Chemistrychemistry.chemical_compoundDeprotonationlawOxidation stateMaterials ChemistryMoleculePhysical and Theoretical ChemistryElectron paramagnetic resonanceta116amidophenoxide radical010405 organic chemistryLigandkompleksiyhdisteetvolframielectronic structure0104 chemical sciencesCrystallographyoxidation statesUnpaired electronchemistryAlkoxidenoninnocent ligandDensity functional theoryInorganic Chemistry Communications
researchProduct

Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

2016

This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resol…

Большой адронный коллайдерbackground [beam]Physics::Instrumentation and DetectorsMonte Carlo methodPerformance of high energy physics detectorJet (particle physics)01 natural sciencesHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)pressureSubatomic Physicsscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Instrumentationпротон-протонные столкновенияQCMathematical PhysicsPhysicseducation.field_of_studyPerformance of high energy physics detectorsLarge Hadron ColliderSettore FIS/01 - Fisica SperimentaleBeam-intensity monitors; Beam-line instrumentation (beam position and profile monitors; Bunch length monitors); Data analysis; Performance of high energy physics detectors; Instrumentation; Mathematical PhysicsData analysiMonte Carlo [numerical calculations]ATLASbuildingsBunchesCERN LHC CollBeam-intensity monitorBeam-line instrumentation (beam position and profile monitorComputingMethodologies_DOCUMENTANDTEXTPROCESSINGcolliding beams [p p]Particle Physics - ExperimentParticle physicsCiências Naturais::Ciências Físicas530 PhysicsAstrophysics::High Energy Astrophysical PhenomenaPopulation:Ciências Físicas [Ciências Naturais]Beam-line instrumentation (beam position and profile monitorsData analysisFOS: Physical sciencesgapCosmic ray530Bunch length monitors)Nuclear physicsATLAS LHC High Energy Physics510 Mathematics0103 physical sciencesBeam-line instrumentation (beam position and profile monitors;; beam-intensity monitors; bunch length monitors); Data analysis;; Performance of High Energy Physics Detectors; LEPHigh Energy Physicsddc:610010306 general physicseducationMuonScience & Technologycosmic radiation [muon]010308 nuclear & particles physicsFísicaLEPBeam-intensity monitorsghostcorrelationExperimental High Energy PhysicsBeam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors); Data analysis; Performance of High Energy Physics DetectorsBeam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors)Physics::Accelerator PhysicsPerformance of High Energy Physics DetectorsATLAS детекторBeam (structure)experimental resultsbeam-line instrumentation
researchProduct