Search results for "Calculus"
showing 10 items of 617 documents
THE MECHANICAL MODEL OF FRACTIONAL VISCOELASTICITY
2010
Viscoelastic materials have been more and more used nowadays for their low-cost productions as well as for their dissipative capabilities that may be coupled with others, more performing materials, to form complex-type engineering elements. The main feature of viscoelastic behavior is the relaxation of the stress state and the creep of the strain field that may be experienced, respectively, in hard or soft test devices. Such phenomenological consideration has been extensively analyzed yet at the beginning of the twentieth century and simple rheological models representing linear, constitutive, stress-velocity relations of the studied material have been proposed. Moreover the rheological rel…
Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results
2011
In capturing visco-elastic behavior, experimental tests play a fundamental rule, since they allow to build up theoretical constitutive laws very useful for simulating their own behavior. The main challenge is representing the visco-elastic materials through simple models, in order to spread their use. However, the wide used models for capturing both relaxation and creep tests are combinations of simple models as Maxwell and/or Kelvin, that depend on several parameters for fitting both creep and relaxation tests. This paper, following Nutting and Gemant idea of fitting experimental data through a power law function, aims at stressing the validity of fractional model. In fact, as soon as rela…
CROSS-POWER SPECTRAL DENSITY AND CROSS-CORRELATION REPRESENTATION BY USING FRACTIONAL SPECTRAL MOMENTS
2012
Filter equation by fractional calculus
2014
Aim of this paper is to represent a causal filter equation for any kind of linear system in the general form L=f(t), where f(t) is the forcing function, x(t) is the output and L is a summation of fractional operators. The exact form of the operator L is obtained by using Mellin transform in complex plane.
Conjunction of Conditional Events and t-Norms
2019
We study the relationship between a notion of conjunction among conditional events, introduced in recent papers, and the notion of Frank t-norm. By examining different cases, in the setting of coherence, we show each time that the conjunction coincides with a suitable Frank t-norm. In particular, the conjunction may coincide with the Product t-norm, the Minimum t-norm, and Lukasiewicz t-norm. We show by a counterexample, that the prevision assessments obtained by Lukasiewicz t-norm may be not coherent. Then, we give some conditions of coherence when using Lukasiewicz t-norm
Characterization of the dynamic behaviour of flax fibre reinforced composites using vibration measurements
2017
International audience; Experimental and numerical methods to identify the linear viscoelastic properties of flax fibre reinforced epoxy (FFRE) composite are presented in this study. The method relies on the evolution of storage modulus and loss factor as observed through the frequency response. Free-free symmetrically guided beams were excited on the dynamic range of 10 Hz to 4 kHz with a swept sine excitation focused around their first modes. A fractional derivative Zener model has been identified to predict the complex moduli. A modified ply constitutive law has been then implemented in a classical laminates theory calculation (CLT) routine.
Extended fractional-order Jeffreys model of viscoelastic hydraulic cylinder
2020
A novel modeling approach for viscoelastic hydraulic cylinders, with negligible inertial forces, is proposed, based on the extended fractional-order Jeffreys model. Analysis and physical reasoning for the parameter constraints and order of the fractional derivatives are provided. Comparison between the measured and computed frequency response functions and time domain transient response argues in favor of the proposed four-parameter fractional-order model.
Amount of nonconstructivity in deterministic finite automata
2010
AbstractWhen D. Hilbert used nonconstructive methods in his famous paper on invariants (1888), P. Gordan tried to prevent the publication of this paper considering these methods as non-mathematical. L.E.J. Brouwer in the early twentieth century initiated intuitionist movement in mathematics. His slogan was “nonconstructive arguments have no value for mathematics”. However, P. Erdös got many exciting results in discrete mathematics by nonconstructive methods. It is widely believed that these results either cannot be proved by constructive methods or the proofs would have been prohibitively complicated. The author (Freivalds, 2008) [10] showed that nonconstructive methods in coding theory are…
Local Normal Forms for First-Order Logic with Applications to Games and Automata
1999
Building on work of Gaifman [Gai82] it is shown that every first-order formula is logically equivalent to a formula of the form ∃ x_1,...,x_l, \forall y, φ where φ is r-local around y, i.e. quantification in φ is restricted to elements of the universe of distance at most r from y. \par From this and related normal forms, variants of the Ehrenfeucht game for first-order and existential monadic second-order logic are developed that restrict the possible strategies for the spoiler, one of the two players. This makes proofs of the existence of a winning strategy for the duplicator, the other player, easier and can thus simplify inexpressibility proofs. \par As another application, automata mode…
Rapid construction of algebraic axioms from samples
1991
Abstract An axiom is called reliable if it is confirmed in several places in a given sample of algebra. A very effective algorithm for enumerating such axioms is described.