Search results for "Cance"

showing 10 items of 12092 documents

2021

Background Malignant melanoma is an immunogenic skin cancer with an increasing global incidence. Advanced stages of melanoma have poor prognoses. Currently, there are no reliable parameters to predict a patient's response to immune checkpoint inhibitor (ICI) therapy. Methods This study highlights the relevance of a distinct immune signature in the blood for response to ICI therapy and overall survival (OS). Therefore, the immune cell composition in the peripheral blood of 45 melanoma patients prior to ICI therapy was analyzed by flow cytometry and complete blood count. Results Responders to ICI therapy displayed an abundance of proliferating CD4+ T cells, an increased lymphocyte-to-monocyte…

0301 basic medicineCancer ResearchPredictive markermedicine.diagnostic_testbusiness.industrymedicine.medical_treatmentMelanomaComplete blood countImmunotherapymedicine.diseaseFlow cytometry03 medical and health sciences030104 developmental biology0302 clinical medicineImmune systemOncology030220 oncology & carcinogenesismedicineMyeloid-derived Suppressor CellCancer researchRadiology Nuclear Medicine and imagingSkin cancerbusinessCancer Medicine
researchProduct

Frequency and prognostic impact of ALK amplifications and mutations in the European Neuroblastoma Study Group (SIOPEN) high-risk neuroblastoma trial …

2021

Purpose: In neuroblastoma (NB), the ALK receptor tyrosine kinase can be constitutively activated through activating point mutations or genomic amplification. We studied ALK genetic alterations in high-risk (HR) patients on the HR-NBL1/SIOPEN trial to determine their frequency, correlation with clinical parameters, and prognostic impact. Materials and methods: Diagnostic tumor samples were available from 1,092 HR-NBL1/SIOPEN patients to determine ALK amplification status (n = 330), ALK mutational profile (n = 191), or both (n = 571). Results: Genomic ALK amplification (ALKa) was detected in 4.5% of cases (41 out of 901), all except one with MYCN amplification (MNA). ALKa was associated with …

0301 basic medicineCancer ResearchPrognostic ImpactAnaplastic Lymphoma Kinase/genetics; Child Preschool; Clinical Trials Phase III as Topic; Europe; Female; Follow-Up Studies; Gene Amplification; Humans; Infant; Male; Mutation Rate; N-Myc Proto-Oncogene Protein/genetics; Neuroblastoma/genetics; Prognosis; Randomized Controlled Trials as Topic; Risk Factors; Survival RateEuropean Neuroblastoma Study GroupSIOPENRELAPSE03 medical and health sciencesNeuroblastoma0302 clinical medicineText miningNeuroblastomahemic and lymphatic diseasesREVEALSMedicine and Health SciencesKINASEMedicineHigh risk neuroblastomaHETEROGENEITYCRIZOTINIBSEGMENTAL CHROMOSOMAL ALTERATIONSACTIVATING MUTATIONSPEDIATRIC-PATIENTSbusiness.industryALK receptor tyrosine kinasePoint mutationREARRANGEMENTSCHEMOTHERAPYmedicine.diseaseDoenças Genéticas030104 developmental biologyALKOncology030220 oncology & carcinogenesisCancer researchbusiness
researchProduct

Betulinic acid induces a novel cell death pathway that depends on cardiolipin modification

2016

Cancer is associated with strong changes in lipid metabolism. For instance, normal cells take up fatty acids (FAs) from the circulation, while tumour cells generate their own and become dependent on de novo FA synthesis, which could provide a vulnerability to target tumour cells. Betulinic acid (BetA) is a natural compound that selectively kills tumour cells through an ill-defined mechanism that is independent of BAX and BAK, but depends on mitochondrial permeability transition-pore opening. Here we unravel this pathway and show that BetA inhibits the activity of steroyl-CoA-desaturase (SCD-1). This enzyme is overexpressed in tumour cells and critically important for cells that utilize de n…

0301 basic medicineCancer ResearchProgrammed cell deathCardiolipinsMitochondrionCell Line03 medical and health scienceschemistry.chemical_compoundSDG 3 - Good Health and Well-beingBetulinic acidGeneticsCardiolipinHumansBetulinic AcidCytotoxicityMolecular BiologyCell DeathbiologyCytochrome cFatty AcidsCytochromes cLipid metabolismAntineoplastic Agents PhytogenicTriterpenesMitochondriaCell biology030104 developmental biologyBiochemistrychemistryCancer cellbiology.protein/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_beingPentacyclic TriterpenesStearoyl-CoA Desaturase
researchProduct

The secreted protein acidic and rich in cysteine is a critical mediator of cell death program induced by WIN/TRAIL combined treatment in osteosarcoma…

2015

Abstract Secreted protein acidic and rich in cysteine (SPARC) is a multi-functional protein which modulates cell-cell and cell-matrix interactions. In cancer cells, SPARC behaves as a tumor promoter in a number of tumors, but it can also act as a tumor suppressor factor. Our previous results showed that the synthetic cannabinoid WIN55,212-2 (WIN), a potent cannabinoid receptor agonist, is able to sensitize osteosarcoma MG63 cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis which is accompanied with endoplasmic reticulum (ER)-stress induction and the increase in autophagic markers. In the present investigation, we studied the role of SPARC in WIN/TRAIL-induced apoptosi…

0301 basic medicineCancer ResearchProgrammed cell deathCell SurvivalMorpholinesCellSPARC cannabinoids osteosarcoma apoptosis caspase-8 activationApoptosisBone NeoplasmsBiologyNaphthalenesTNF-Related Apoptosis-Inducing Ligand03 medical and health sciences0302 clinical medicineProtein DomainsSettore BIO/10 - BiochimicaCell Line TumormedicineCytotoxic T cellHumansOsteonectinGene SilencingCaspase 8OsteosarcomaOncogeneCell DeathEndoplasmic reticulumCell MembraneCell cycleEndoplasmic Reticulum StressCell biologyBenzoxazines030104 developmental biologymedicine.anatomical_structureOncologyApoptosis030220 oncology & carcinogenesisCancer cellRNA InterferenceInternational journal of oncology
researchProduct

2021

The prognosis for advanced prostate carcinoma (PCa) remains poor due to development of therapy resistance, and new treatment options are needed. Shikonin (SHI) from Traditional Chinese Medicine has induced antitumor effects in diverse tumor entities, but data related to PCa are scarce. Therefore, the parental (=sensitive) and docetaxel (DX)-resistant PCa cell lines, PC3, DU145, LNCaP, and 22Rv1 were exposed to SHI [0.1–1.5 μM], and tumor cell growth, proliferation, cell cycling, cell death (apoptosis, necrosis, and necroptosis), and metabolic activity were evaluated. Correspondingly, the expression of regulating proteins was assessed. Exposure to SHI time- and dose-dependently inhibited tum…

0301 basic medicineCancer ResearchProgrammed cell deathCell cycle checkpointChemistryNecroptosisfungiCellCell cycleurologic and male genital diseases03 medical and health scienceschemistry.chemical_compound030104 developmental biology0302 clinical medicinemedicine.anatomical_structureOncologyDU145030220 oncology & carcinogenesisLNCaPCancer researchmedicineGrowth inhibitionCancers
researchProduct

2017

AbstractPP2C serine–threonine phosphatase, Wip1, is an important regulator of stress response. Wip1 controls a number of critical cellular functions: proliferation, cell cycle arrest, senescence and programmed cell death, apoptosis or autophagy. Ppm1d, the gene encoding Wip1 phosphatase, is expressed in hematopoietic progenitors, stem cells, neutrophils, macrophages B and T lymphocytes in bone marrow and peripheral blood. The Wip1−/− mice display immunodeficiency, abnormal lymphoid histopathology in thymus and spleen, defects in B- and T-cell differentiation, as well as susceptibility to viral infection. At the same time, Wip1 knockout mice exhibit pro-inflammatory phenotype in skin and int…

0301 basic medicineCancer ResearchProgrammed cell deathImmunologyInflammationCell BiologyBiology03 medical and health sciencesCellular and Molecular NeuroscienceHaematopoiesis030104 developmental biologymedicine.anatomical_structureImmune systemmedicineCancer researchBone marrowmedicine.symptomProgenitor cellStem cellPI3K/AKT/mTOR pathwayCell Death Discovery
researchProduct

Phosphoproteome Profiling Reveals Multifunctional Protein NPM1 as part of the Irradiation Response of Tumor Cells

2019

To fight resistances to radiotherapy, the understanding of escape mechanisms of tumor cells is crucial. The aim of this study was to identify phosphoproteins that are regulated upon irradiation. The comparative analysis of the phosphoproteome before and after irradiation brought nucleophosmin (NPM1) into focus as a versatile phosphoprotein that has already been associated with tumorigenesis. We could show that knockdown of NPM1 significantly reduces tumor cell survival after irradiation. NPM1 is dephosphorylated stepwise within 1 hour after irradiation at two of its major phosphorylation sites: threonine-199 and threonine-234/237. This dephosphorylation is not the result of a fast cell cycl…

0301 basic medicineCancer ResearchProgrammed cell deathOriginal articleNucleoplasmCell cycle checkpointChemistryNucleolusmedicine.disease_causelcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogenslcsh:RC254-282Cell biologyDephosphorylation03 medical and health sciences030104 developmental biology0302 clinical medicineOncologyCytoplasm030220 oncology & carcinogenesismedicineCarcinogenesisIntracellularTranslational Oncology
researchProduct

2018

Abstract TNFα is a prominent proinflammatory cytokine and a critical mediator for the development of many types of cancer such as breast, colon, prostate, cervical, skin, liver, and chronic lymphocytic leukemia. Binding of TNFα to TNFR1 can lead to divergent signaling pathways promoting predominantly NF-κB activation but also cell death. We report here that the nitric oxide (NO) donor glyceryl trinitrate (GTN) converts TNFα, generated from immune cells or cancer cells stimulated by chemotherapy, into a prodeath mediator in colon and mammary cancer cells. GTN-mediated S-nitrosylation of cIAP1 on cysteines 571 and 574 inhibited its E3 ubiquitin ligase activity, which in turn reduced Lys63-lin…

0301 basic medicineCancer ResearchProgrammed cell deathbiologybusiness.industryCancerInflammationmedicine.diseaseUbiquitin ligaseProinflammatory cytokine03 medical and health sciences030104 developmental biologyImmune systemOncologyCancer cellbiology.proteinCancer researchmedicineTumor necrosis factor alphamedicine.symptombusinessCancer Research
researchProduct

Molecular Engineering Strategies Tailoring the Apoptotic Response to a MET Therapeutic Antibody

2020

The MET oncogene encodes a tyrosine kinase receptor involved in the control of a complex network of biological responses that include protection from apoptosis and stimulation of cell growth during embryogenesis, tissue regeneration, and cancer progression. We previously developed an antagonist antibody (DN30) inducing the physical removal of the receptor from the cell surface and resulting in suppression of the biological responses to MET. In its bivalent form, the antibody displayed a residual agonist activity, due to dimerization of the lingering receptors, and partial activation of the downstream signaling cascade. The balance between the two opposing activities is variable in different…

0301 basic medicineCancer ResearchProgrammed cell deathlcsh:RC254-282ArticleReceptor tyrosine kinase03 medical and health sciences0302 clinical medicineMET oncogenemedicineantibodiesAntibodies; Apoptosis; MET oncogene; MET targeted therapyReceptorbiologyCell growthChemistryapoptosislcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmet targeted therapyCell biology030104 developmental biologyOncology<i>met</i> oncogeneApoptosis030220 oncology & carcinogenesisCancer cellbiology.proteinHepatocyte growth factorAntibodymedicine.drugCancers
researchProduct

HDAC1 and HDAC2 integrate the expression of p53 mutants in pancreatic cancer.

2015

Mutation of p53 is a frequent genetic lesion in pancreatic cancer being an unmet clinical challenge. Mutants of p53 have lost the tumour-suppressive functions of wild type p53. In addition, p53 mutants exert tumour-promoting functions, qualifying them as important therapeutic targets. Here, we show that the class I histone deacetylases HDAC1 and HDAC2 contribute to maintain the expression of p53 mutants in human and genetically defined murine pancreatic cancer cells. Our data reveal that the inhibition of these HDACs with small molecule HDAC inhibitors (HDACi), as well as the specific genetic elimination of HDAC1 and HDAC2, reduce the expression of mutant p53 mRNA and protein levels. We fur…

0301 basic medicineCancer ResearchProteasome Endopeptidase ComplexMutantHistone Deacetylase 2Histone Deacetylase 1Biologymedicine.disease_causeMolecular oncologyProto-Oncogene Proteins c-myc03 medical and health sciencesMicePancreatic cancerGeneticsmedicineAnimalsHumansRNA MessengerPromoter Regions GeneticMolecular BiologyRegulation of gene expressionMice KnockoutMutationWild typeCancerProto-Oncogene Proteins c-mdm2medicine.diseaseGenes p53HDAC13. Good healthGene Expression Regulation NeoplasticHistone Deacetylase InhibitorsPancreatic NeoplasmsDisease Models Animal030104 developmental biologyMutationCancer researchOncogene
researchProduct