Search results for "Cannabi"

showing 10 items of 489 documents

The secreted protein acidic and rich in cysteine is a critical mediator of cell death program induced by WIN/TRAIL combined treatment in osteosarcoma…

2015

Abstract Secreted protein acidic and rich in cysteine (SPARC) is a multi-functional protein which modulates cell-cell and cell-matrix interactions. In cancer cells, SPARC behaves as a tumor promoter in a number of tumors, but it can also act as a tumor suppressor factor. Our previous results showed that the synthetic cannabinoid WIN55,212-2 (WIN), a potent cannabinoid receptor agonist, is able to sensitize osteosarcoma MG63 cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis which is accompanied with endoplasmic reticulum (ER)-stress induction and the increase in autophagic markers. In the present investigation, we studied the role of SPARC in WIN/TRAIL-induced apoptosi…

0301 basic medicineCancer ResearchProgrammed cell deathCell SurvivalMorpholinesCellSPARC cannabinoids osteosarcoma apoptosis caspase-8 activationApoptosisBone NeoplasmsBiologyNaphthalenesTNF-Related Apoptosis-Inducing Ligand03 medical and health sciences0302 clinical medicineProtein DomainsSettore BIO/10 - BiochimicaCell Line TumormedicineCytotoxic T cellHumansOsteonectinGene SilencingCaspase 8OsteosarcomaOncogeneCell DeathEndoplasmic reticulumCell MembraneCell cycleEndoplasmic Reticulum StressCell biologyBenzoxazines030104 developmental biologymedicine.anatomical_structureOncologyApoptosis030220 oncology & carcinogenesisCancer cellRNA InterferenceInternational journal of oncology
researchProduct

Singular Location and Signaling Profile of Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Dorsal Striatum

2018

The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A(2A) receptor (A(2A)R) and cannabinoid CB1 receptor (CB1R), are of pivotal importance in the control of neuronal excitability. Facilitatory and inhibitory functional interactions between striatal A(2A)R and CB1R have been reported, and evidence supports that this cross-talk may rely, at least in part, on the formation of A(2A)R-CB1R heteromeric complexes. However, th…

0301 basic medicineCannabinoid receptorAdenosineReceptor Adenosine A2Amedicine.medical_treatmentAdenosinaAdenosine A2A receptormediated inhibitionStriatumBiologyhuntingtons-disease micecannabinoid CB1Mice03 medical and health sciencesglutamatergic neurotransmission0302 clinical medicineReceptor Cannabinoid CB1NeurobiologyNeural PathwaysBasal gangliamedicineAnimalsHumansendocannabinoid systemGenetically modified animalProtein Structure QuaternaryA(2A) receptorsPharmacologyEndocannabinoid systemCorpus Striatumprotein-coupled receptorsProtein SubunitsPsychiatry and Mental healthtransgenic mouse modelHuntington Disease030104 developmental biologyMetabotropic receptornervous systembasal gangliaCannabinoidallosteric interactionsNeuroscience030217 neurology & neurosurgeryNeurobiologiaSignal Transduction
researchProduct

2021

Brain homeostasis is the dynamic equilibrium whereby physiological parameters are kept actively within a specific range. The homeostatic range is not fixed and may change throughout the individual's lifespan, or may be transiently modified in the presence of severe perturbations. The endocannabinoid system has emerged as a safeguard of homeostasis, e.g., it modulates neurotransmission and protects neurons from prolonged or excessively strong activation. We used genetically engineered mouse lines that lack the cannabinoid type-1 receptor (CB1) either in dorsal telencephalic glutamatergic or in forebrain GABAergic neurons to create new allostatic states, resulting from alterations in the exci…

0301 basic medicineCannabinoid receptorCell BiologyNeurotransmissionHippocampal formationBiologyEndocannabinoid system03 medical and health sciencesCellular and Molecular NeuroscienceGlutamatergic030104 developmental biology0302 clinical medicineSynaptic plasticityForebrainGABAergicNeuroscience030217 neurology & neurosurgeryFrontiers in Synaptic Neuroscience
researchProduct

2018

Defining functional domains and amino acid residues in G protein coupled receptors (GPCRs) represent an important way to improve rational drug design for this major class of drug targets. The cannabinoid type 1 (CB1) receptor is one of the most abundant GPCRs in the central nervous system and is involved in many physiological and pathophysiological processes. Interestingly, cannabinoid type 1 receptor with a phenylalanine 238 to leucine mutation (CB1F238L) has been already linked to a number of both in vitro and in vivo alterations. While CB1F238L causes significantly reduced presynaptic neurotransmitter release at the cellular level, behaviorally this mutation induces increased risk taking…

0301 basic medicineCannabinoid receptorChemistrymedicine.medical_treatmentLigand (biochemistry)EndocytosisEndocannabinoid systemCell biology03 medical and health sciencesCellular and Molecular Neuroscience030104 developmental biologymedicinelipids (amino acids peptides and proteins)CannabinoidReceptorMolecular BiologyLipid raftG protein-coupled receptorFrontiers in Molecular Neuroscience
researchProduct

Palmitoylethanolamide Promotes a Proresolving Macrophage Phenotype and Attenuates Atherosclerotic Plaque Formation

2018

Objective— Palmitoylethanolamide is an endogenous fatty acid mediator that is synthetized from membrane phospholipids by N -acyl phosphatidylethanolamine phospholipase D. Its biological actions are primarily mediated by PPAR-α (peroxisome proliferator-activated receptors α) and the orphan receptor GPR55. Palmitoylethanolamide exerts potent anti-inflammatory actions but its physiological role and promise as a therapeutic agent in chronic arterial inflammation, such as atherosclerosis remain unexplored. Approach and Results— First, the polarization of mouse primary macrophages towards a proinflammatory phenotype was found to reduce N -acyl phosphatidylethanolamine phospholipase D expression …

0301 basic medicineCannabinoid receptorTime FactorsMice Knockout ApoECHOLESTEROL TRANSPORTAnti-Inflammatory AgentsPhospholipaseProto-Oncogene Maschemistry.chemical_compoundCannabinoid receptor type 2Receptors CannabinoidAortachemistry.chemical_classificationMARROW-DERIVED CELLSAPOPTOTIC CELL ACCUMULATIONPlaque AtheroscleroticCell biologymacrophagesDENSITY-LIPOPROTEIN RECEPTORPhenotypeREDUCES INFLAMMATIONCB2 RECEPTOREthanolaminesFemaleCardiology and Cardiovascular MedicineSCAVENGER RECEPTORAortic DiseasesPalmitic Acidsta3111fatty acidsCell Line03 medical and health sciencesMediatorPhagocytosisPhospholipase DAnimalsHumansScavenger receptorCANNABINOID RECEPTORPhosphatidylethanolaminePalmitoylethanolamidec-Mer Tyrosine KinaseFatty acidcholesterolta3121AmidesRatsMice Inbred C57BLDisease Models Animal030104 developmental biologychemistryinflammationRECEPTOR CLASS-BatherosclerosisCONTACT ALLERGIC DERMATITISArteriosclerosis Thrombosis and Vascular Biology
researchProduct

Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus

2018

Astroglial type‐1 cannabinoid (CB1) receptors are involved in synaptic transmission, plasticity and behavior by interfering with the so‐called tripartite synapse formed by pre‐ and post‐synaptic neuronal elements and surrounding astrocyte processes. However, little is known concerning the subcellular distribution of astroglial CB1 receptors. In particular, brain CB1 receptors are mostly localized at cells' plasmalemma, but recent evidence indicates their functional presence in mitochondrial membranes. Whether CB1 receptors are present in astroglial mitochondria has remained unknown. To investigate this issue, we included conditional knock‐out mice lacking astroglial CB1 receptor expression …

0301 basic medicineCannabinoid receptormedicine.medical_treatmentImmunoelectron microscopyNeurotransmissionBiologyHippocampusImmunoenzyme Techniques03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineReceptor Cannabinoid CB1Glial Fibrillary Acidic ProteinTripartite synapsemedicineAnimalsMicroscopy ImmunoelectronReceptorMice KnockoutGlial fibrillary acidic proteinmusculoskeletal neural and ocular physiologyfood and beveragesMitochondriaCell biology030104 developmental biologymedicine.anatomical_structurenervous systemNeurologyAstrocytesbiology.proteinlipids (amino acids peptides and proteins)Cannabinoidpsychological phenomena and processes030217 neurology & neurosurgeryAstrocyte
researchProduct

Quantification of the Cannabinoid Type 1 Receptor Availability in the Mouse Brain

2020

Introduction: The endocannabinoid system is involved in several diseases such as addictive disorders, schizophrenia, post-traumatic stress disorder, and eating disorders. As often mice are used as the preferred animal model in translational research, in particular when using genetically modified mice, this study aimed to provide a systematic analysis of in vivo cannabinoid type 1 (CB1) receptor ligand-binding capacity using positron emission tomography (PET) using the ligand [18F]MK-9470. We then compared the PET results with literature data from immunohistochemistry (IHC) to review the consistency between ex vivo protein expression and in vivo ligand binding.Methods: Six male C57BL/6J (6–9…

0301 basic medicineCannabinoid receptormedicine.medical_treatmentNeuroscience (miscellaneous)PharmacologyBiologylcsh:RC321-571lcsh:QM1-69503 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineIn vivoRadioligandmedicine[18F]MK-9470 ; cannabinoid type 1 receptor ; immunohistochemistry ; microPET ; mouseReceptorlcsh:Neurosciences. Biological psychiatry. NeuropsychiatrymouseOriginal ResearchCerebrumlcsh:Human anatomyLigand (biochemistry)microPETEndocannabinoid system[18F]MK-9470030104 developmental biologymedicine.anatomical_structurenervous systemcannabinoid type 1 receptorimmunohistochemistryCannabinoidAnatomy030217 neurology & neurosurgeryNeuroscienceFrontiers in Neuroanatomy
researchProduct

Anatomical characterization of the cannabinoid CB1receptor in cell-type-specific mutant mouse rescue models

2016

Type 1 cannabinoid (CB1 ) receptors are widely distributed in the brain. Their physiological roles depend on their distribution pattern, which differs remarkably among cell types. Hence, subcellular compartments with little but functionally relevant CB1 receptors can be overlooked, fostering an incomplete mapping. To overcome this, knockin mice with cell-type-specific rescue of CB1 receptors have emerged as excellent tools for investigating CB1 receptors' cell-type-specific localization and sufficient functional role with no bias. However, to know whether these rescue mice maintain endogenous CB1 receptor expression level, detailed anatomical studies are necessary. The subcellular distribut…

0301 basic medicineCannabinoid receptormusculoskeletal neural and ocular physiologyGeneral Neurosciencemedicine.medical_treatmentImmunoelectron microscopyfood and beveragesBiologyHippocampal formationEndocannabinoid system03 medical and health sciencesGlutamatergic030104 developmental biology0302 clinical medicinenervous systemmedicineGABAergiclipids (amino acids peptides and proteins)CannabinoidReceptorNeurosciencepsychological phenomena and processes030217 neurology & neurosurgeryJournal of Comparative Neurology
researchProduct

Lipid Mediators in the Regulation of Emotions, Memory, and Cognitive Functions

2017

This chapter aims at highlighting the diverse roles of endocannabinoids in the coordination of balanced neuronal activities, which finally set the basis for the organism’s characteristics to store and remember important and useful things, to forget non-useful things, and to cope with new challenges. Altogether, the fine-tuned regulation of these processes is crucial for optimal life and survival. The endocannabinoid system appears to be a central intrinsic homeostatic factor in the organism, modulating these processes. Receptors for (endo)cannabinoids are also targets for exogenous cannabinoids, putting also relevance of external substances in the interference with these processes. The gene…

0301 basic medicineCell typeCommunicationCannabinoid receptorbusiness.industryCognitionContext (language use)Endocannabinoid systemhumanities03 medical and health sciences030104 developmental biology0302 clinical medicinenervous systemlipids (amino acids peptides and proteins)Memory consolidationSet (psychology)PsychologybusinessNeuroscience030217 neurology & neurosurgeryOrganism
researchProduct

Chronic stress leads to epigenetic dysregulation in the neuropeptide-Y and cannabinoid CB1 receptor genes in the mouse cingulate cortex.

2017

Persistent stress triggers a variety of mechanisms, which may ultimately lead to the occurrence of anxiety- and depression-related disorders. Epigenetic modifications represent a mechanism by which chronic stress mediates long-term effects. Here, we analyzed brain tissue from mice exposed to chronic unpredictable stress (CUS), which induced impaired emotional and nociceptive behaviors. As endocannabinoid (eCB) and neuropeptide-Y (Npy) systems modulate emotional processes, we hypothesized that CUS may affect these systems through epigenetic mechanisms. We found reduced Npy expression and Npy type 1 receptor (Npy1r) signaling, and decreased expression of the cannabinoid type 1 receptor (CB1) …

0301 basic medicineCingulate cortexMalemedicine.medical_specialtyCannabinoid receptormedicine.medical_treatmentBiologyGyrus CinguliEpigenesis Genetic03 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compoundMice0302 clinical medicineReceptor Cannabinoid CB1Internal medicinemental disordersmedicineAnimalsHumansChronic stressNeuropeptide YPharmacologyHistone deacetylase 2URB597Endocannabinoid systemhumanitiesMice Inbred C57BL030104 developmental biologyEndocrinologychemistryBenzamidesCannabinoidHistone deacetylaseCarbamates030217 neurology & neurosurgeryStress PsychologicalNeuropharmacology
researchProduct