Search results for "Capsid Proteins"

showing 6 items of 136 documents

Assembly and Translocation of Papillomavirus Capsid Proteins

2002

ABSTRACT The major and minor capsid proteins of polyomavirus are preassembled in the cytoplasm and translocated to the nucleus only as a VP1-VP2/VP3 complex. In this study, we describe independent nuclear translocation of the L1 major protein and the L2 minor capsid protein of human papillomavirus type 33 by several approaches. First, we observed that expression and nuclear translocation of L2 in natural lesions precede expression of L1. Second, using a cell culture system for coexpression, we found that accumulation of L2 in nuclear domain 10 (ND10) subnuclear structures precedes L1 by several hours. In contrast, complexes of L2 and mutants of L1 forced to assemble in the cytoplasm are tra…

virusesImmunologyActive Transport Cell NucleusChromosomal translocationBiologyMicrobiologychemistry.chemical_compoundCapsidVirologyMG132medicineAnimalsHumansPapillomaviridaeCOS cellsStructure and AssemblyVirus AssemblyOncogene Proteins Viralbiochemical phenomena metabolism and nutritionMolecular biologymedicine.anatomical_structureCapsidchemistryCytoplasmCell cultureInsect ScienceCOS CellsProteasome inhibitorCapsid ProteinsFemaleNucleusmedicine.drug
researchProduct

Nuclear localization but not PML protein is required for incorporation of the papillomavirus minor capsid protein L2 into virus-like particles.

2004

ABSTRACT Recent reports suggest that nuclear domain(s) 10 (ND10) is the site of papillomavirus morphogenesis. The viral genome replicates in or close to ND10. In addition, the minor capsid protein, L2, accumulates in these subnuclear structures and recruits the major capsid protein, L1. We have now used cell lines deficient for promyelocytic leukemia (PML) protein, the main structural component of ND10, to study the role of this nuclear protein for L2 incorporation into virus-like particles (VLPs). L2 expressed in PML protein knockout (PML −/− ) cells accumulated in nuclear dots, which resemble L2 aggregates forming at ND10 in PML protein-containing cells. These L2 assemblies also attracted…

virusesImmunologyActive Transport Cell NucleusNuclear dotsBiologyPromyelocytic Leukemia ProteinMicrobiologyCell LinePromyelocytic leukemia proteinMiceDeath-associated protein 6Virus-like particleVirologymedicineAnimalsHumansNuclear proteinPapillomaviridaeAdaptor Proteins Signal TransducingCell NucleusTumor Suppressor ProteinsStructure and AssemblyIntracellular Signaling Peptides and ProteinsVirionvirus diseasesNuclear ProteinsOncogene Proteins Viralbiochemical phenomena metabolism and nutritionMolecular biologyCell biologyNeoplasm ProteinsCell nucleusMicroscopy Electronmedicine.anatomical_structureInsect ScienceMutationbiology.proteinCapsid ProteinsNuclear transportCarrier ProteinsCo-Repressor ProteinsNuclear localization sequenceMolecular ChaperonesTranscription FactorsJournal of virology
researchProduct

Generation and neutralization of pseudovirions of human papillomavirus type 33

1997

Since human papillomaviruses (HPV) cannot be propagated in cell culture, the generation of infectious virions in vitro is a highly desirable goal. Here we report that pseudovirions can be generated by the assembly of virus-like particles (VLPs) in COS-7 cells containing multiple copies of a marker plasmid. Using recombinant vaccinia viruses, we have obtained spherical VLPs of HPV type 33 (HPV-33) which fractionate into heavy and light VLPs in cesium chloride density gradients. VLPs in the heavy fraction (1.31 g/cm3) carry the plasmid in DNase-resistant form and are capable of transferring the genetic marker located on the plasmid to COS-7 cells in a DNase-resistant way (pseudoinfection). Th…

virusesImmunologyBiologyAntibodies Viralcomplex mixturesMicrobiologyNeutralizationlaw.inventionchemistry.chemical_compoundCapsidPlasmidNeutralization TestslawVirologyAnimalsDeoxyribonuclease IHumansAntigens ViralPapillomaviridaeAntiserumVirus AssemblyVirionvirus diseasesOncogene Proteins ViralVirologyMolecular biologyIn vitroTiterchemistryCapsidInsect ScienceCOS CellsDNA ViralRecombinant DNACapsid ProteinsDNAResearch ArticleJournal of Virology
researchProduct

The closest relatives of icosahedral viruses of thermophilic bacteria are among viruses and plasmids of the halophilic archaea.

2009

We have sequenced the genome and identified the structural proteins and lipids of the novel membranecontaining, icosahedral virus P23-77 of Thermus thermophilus. P23-77 has an 17-kb circular double-stranded DNA genome, which was annotated to contain 37 putative genes. Virions were subjected to dissociation analysis, and five protein species were shown to associate with the internal viral membrane, while three were constituents of the protein capsid. Analysis of the bacteriophage genome revealed it to be evolutionarily related to another Thermus phage (IN93), archaeal Halobacterium plasmid (pHH205), a genetic element integrated into Haloarcula genome (designated here as IHP for integrated Ha…

virusesImmunologyMicrobiologyGenomeVirusBacteriophage03 medical and health sciencesBacterial ProteinsVirologyGeneVirus classificationPhylogeny030304 developmental biologyGeneticsAdenosine Triphosphatases0303 health sciencesbiologyBase Sequence030306 microbiologyThermus thermophilusMembrane ProteinsViral membraneProvirusbiology.organism_classificationLipidsGenetic Diversity and EvolutionVirion assemblyGenes BacterialInsect ScienceCapsid ProteinsGenome BacterialJournal of virology
researchProduct

Impact of VP1-Specific Protein Sequence Motifs on Adeno-Associated Virus Type 2 Intracellular Trafficking and Nuclear Entry

2012

ABSTRACT Adeno-associated virus type 2 (AAV2) has gained much interest as a gene delivery vector. A hallmark of AAV2-mediated gene transfer is an intracellular conformational change of the virus capsid, leading to the exposure of infection-relevant protein domains. These protein domains, which are located on the N-terminal portion of the structural proteins VP1 and VP2, include a catalytic phospholipase A 2 domain and three clusters of basic amino acids. We have identified additional protein sequence motifs located on the VP1/2 N terminus that also proved to be obligatory for virus infectivity. These motifs include signals that are known to be involved in protein interaction, endosomal sort…

virusesImmunologyProtein domainAmino Acid MotifsMolecular Sequence DataSequence alignmentBiologyMicrobiologyVirusCell LineParvoviridae InfectionsVirologyHumansAmino Acid SequenceAdeno-Associated Virus Type 2Peptide sequenceCell NucleusDependovirusMolecular biologyTransport proteinCell biologyVirus-Cell InteractionsProtein TransportCapsidInsect ScienceCapsid ProteinsSequence motifSequence Alignment
researchProduct

Lipid Binding Controls Dimerization of the Coat Protein p24 Transmembrane Helix

2019

Abstract Coat protein (COP) I and COP II complexes are involved in the transport of proteins between the endoplasmic reticulum and the Golgi apparatus in eukaryotic cells. The formation of COP I/II complexes at membrane surfaces is an early step in vesicle formation and is mastered by p24, a type I transmembrane protein. Oligomerization of p24 monomers was suggested to be mediated and/or stabilized via interactions within the transmembrane domain, and the p24 transmembrane helix appears to selectively bind a single sphingomyelin C18:0 molecule. Furthermore, a potential cholesterol-binding sequence has also been predicted in the p24 transmembrane domain. Thus, sphingomyelin and/or cholestero…

virusesLipid BilayersBiophysicsProtein Structure Secondary03 medical and health sciencessymbols.namesake0302 clinical medicineimmune system diseasesAmino Acid Sequence030304 developmental biology0303 health sciencesChemistryEndoplasmic reticulumVesicleCholesterol bindingvirus diseasesArticlesCOPIGolgi apparatusLipidsTransmembrane proteinSphingomyelinsTransmembrane domainCholesterolsymbolsBiophysicsCapsid Proteinslipids (amino acids peptides and proteins)SphingomyelinDimerization030217 neurology & neurosurgeryBiophysical Journal
researchProduct