Search results for "Capsid"
showing 10 items of 248 documents
Hydrophobic pocket targeting probes for enteroviruses
2015
Visualization and tracking of viruses without compromising their functionality is crucial in order to understand virus targeting to cells and tissues, and to understand the subsequent subcellular steps leading to virus uncoating and replication. Enteroviruses are important human pathogens causing a vast number of acute infections, and are also suggested to contribute to the development of chronic diseases like type I diabetes. Here, we demonstrate a novel method to target site-specifically the hydrophobic pocket of enteroviruses. A probe, a derivative of Pleconaril, was developed and conjugated to various labels that enabled the visualization of enteroviruses under light and electron micros…
Site-specific targeting of enterovirus capsid by functionalized monodisperse gold nanoclusters
2014
Development of precise protocols for accurate site-specific conjugation of monodisperse inorganic nanoparticles to biological material is one of the challenges in contemporary bionanoscience and nanomedicine. We report here a successful site-specific covalent conjugation of functionalized atomically monodisperse gold clusters with 1.5-nm metal cores to viral surfaces. Water-soluble Au102(para-mercaptobenzoic acid)44 clusters, functionalized by maleimide linkers to target cysteines of viral capsid proteins, were synthesized and conjugated to enteroviruses echovirus 1 and coxsackievirus B3. Quantitative analysis of transmission electron microscopy images and the known virus structures showed …
Early entry events in Echovirus 30 infection
2020
Echovirus 30 (E30), a member of the enterovirus B species, is a major cause of viral meningitis, targeting children and adults alike. While it is a frequently isolated enterovirus and the cause of several outbreaks all over the world, surprisingly little is known regarding its entry and replication strategy within cells. In this study, we used E30 strain Bastianni (E30B) generated from an infectious cDNA clone in order to study early entry events during infection in human RD cells. E30B required the newly discovered Fc echovirus receptor (FcRn) for successful infection, but not the coxsackievirus and adenovirus receptor (CAR) or decay-accelerating factor (DAF), although an interaction with …
Improvement in Nuclear Entry and Transgene Expression of Baculoviruses by Disintegration of Microtubules in Human Hepatocytes
2005
ABSTRACT Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), a potent virus for mammalian cell gene delivery, possesses an ability to transduce mammalian cells without viral replication. We examined the role of the cellular cytoskeleton in the cytoplasmic trafficking of viral particles toward the nucleus in human hepatic cells. Microscopic studies showed that capsids were found in the nucleus after either viral inoculation or cytoplasmic microinjection of nucleocapsids. The presence of microtubule (MT) depolymerizing agents caused the amount of nuclear capsids to increase. Overexpression of p50/dynamitin, an inhibitor of dynein-dependent endocytic trafficking from peripheral e…
Alix regulates egress of hepatitis B virus naked capsid particles in an ESCRT-independent manner
2010
Hepatitis B virus (HBV) is an enveloped DNA virus that exploits the endosomal sorting complexes required for transport (ESCRT) pathway for budding. In addition to infectious particles, HBV-replicating cells release non-enveloped (nucleo)capsids, but their functional implication and pathways of release are unclear. Here, we focused on the molecular mechanisms and found that the sole expression of the HBV core protein is sufficient for capsid release. Unexpectedly, released capsids are devoid of a detectable membrane bilayer, implicating a non-vesicular exocytosis process. Unlike virions, naked capsid budding does not require the ESCRT machinery. Rather, we identified Alix, a multifunctional …
A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes
2005
ABSTRACT Papillomaviruses are internalized via clathrin-dependent endocytosis. However, the mechanism by which viral genomes pass endosomal membranes has not been elucidated. In this report we show that the minor capsid protein L2 is required for egress of viral genomes from endosomes but not for initial uptake and uncoating and that a 23-amino-acid peptide at the C terminus of L2 is necessary for this function. Pseudogenomes encapsidated by L1 and L2 lacking this peptide accumulated in vesicular compartments similar to that observed with L1-only viral particles, and these mutant pseudoviruses were noninfectious. This L2 peptide displayed strong membrane-disrupting activity, induced cytolys…
The endocytic trafficking pathway of oncogenic papillomaviruses
2019
Over the last two decades many host cell proteins have been described to be involved in the process of infectious entry of oncogenic human papillomaviruses (HPV). After initial binding and priming of the capsid, a sequence of events on the cell surface precedes the formation of the HPV entry platform. It has been shown that the virus-associated entry complex consists of membrane organizers, tetraspanins CD151 and CD63, and their associated partner proteins such as integrins, growth factor receptors, and the annexin A2 heterotetramer. Further recruitment of cytoplasmic factors such as the obscurin-like protein 1 and actin results in a non-canonical clathrin-independent endocytosis of the vir…
The Medicinal Chemistry of Zika Virus
2021
Arthropod-borne viruses, also known as arboviruses, are transmitted by bites of infected mosquito or tick vectors. In this context, the Flavivirus genus is mainly transmitted by mosquitoes from the Aedes genus, being the Ae. africanus, Ae. aegypti, and Ae. Albopictus species are responsible for transmitting the Zika virus (ZIKV). It is a lipid-enveloped virus constitute of an RNA genome, which is translated into a polyprotein encoding three structural proteins {(capsid (C), membrane (M), and envelope (E)} and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). Several biological targets have been identified for developing antiviral agents against ZIKV, which could pre…
G2/M checkpoint regulation and apoptosis facilitate the nuclear egress of parvoviral capsids
2022
The nuclear export factor CRM1-mediated pathway is known to be important for the nuclear egress of progeny parvovirus capsids in the host cells with virus-mediated cell cycle arrest at G2/M. However, it is still unclear whether this is the only pathway by which capsids exit the nucleus. Our studies show that the nuclear egress of DNA-containing full canine parvovirus. capsids was reduced but not fully inhibited when CRM1-mediated nuclear export was prevented by leptomycin B. This suggests that canine parvovirus capsids might use additional routes for nuclear escape. This hypothesis was further supported by our findings that nuclear envelope (NE) permeability was increased at the late stages…
Crystal Structure of the Maturation Protein from Bacteriophage Qβ
2017
Abstract Virions of the single-stranded RNA bacteriophages contain a single copy of the maturation protein, which is bound to the phage genome and is required for the infectivity of the particles. The maturation protein mediates the adsorption of the virion to bacterial pili and the subsequent release and penetration of the genome into the host cell. Here, we report a crystal structure of the maturation protein from bacteriophage Qβ. The protein has a bent, highly asymmetric shape and spans 110 A in length. Apart from small local substructures, the overall fold of the maturation protein does not resemble that of other known proteins. The protein is organized in two distinct regions, an α-he…