Search results for "Cardinali"

showing 10 items of 48 documents

Blocking sets and partial spreads in finite projective spaces

1980

A t-blocking set in the finite projective space PG(d, q) with d≥t+1 is a set $$\mathfrak{B}$$ of points such that any (d−t)-dimensional subspace is incident with a point of $$\mathfrak{B}$$ and no t-dimensional subspace is contained in $$\mathfrak{B}$$ . It is shown that | $$\mathfrak{B}$$ |≥q t +...+1+q t−1√q and the examples of minimal cardinality are characterized. Using this result it is possible to prove upper and lower bounds for the cardinality of partial t-spreads in PG(d, q). Finally, examples of blocking sets and maximal partial spreads are given.

CombinatoricsDiscrete mathematicsCardinalityDifferential geometryHyperbolic geometryProjective spaceGeometry and TopologyAlgebraic geometryUpper and lower boundsSubspace topologyMathematicsProjective geometryGeometriae Dedicata
researchProduct

Ranking and unrankingk-ary trees with a 4k –4 letter alphabet

1997

Abstract The problem of the direct generation in A-order of binary trees was stated by Zaks in 1980. In 1988 Roelants van Baronaigien and Ruskey gave a solution for k-ary trees with n internal nodes using an encoding sequence of kn+1 integers between 1 and n. Vajnovszki and Pallo improved this result for binary trees in 1994 using words of length n–1 on a four letter alphabet. Recently Korsh generalized the Vajnovszki and Pallo’s generating algorithm to k-ary trees using an alphabet whose cardinality depends on k but not on n. We give in this paper ranking and unranking algorithms for k-ary trees using the Korsh’s encoding scheme.

CombinatoricsDiscrete mathematicsSequenceCardinalityBinary treeEncoding (memory)Weight-balanced treeAlphabetMathematicsZaksRanking (information retrieval)Journal of Information and Optimization Sciences
researchProduct

«Español como si naciera allá». Giannettino Doria, cardinale della fazione spagnola (1604-1642)

2019

Il saggio ricostruisce l'apporto del cardinale genovese Giannettino Doria alle dinamiche interne alla cosiddetta "fazione spagnola", operante a Roma nella prima metà del '600. L'analisi incrocia temi storiograficamente densi e tra loro intrecciati: il gioco delle promozioni cardinalizie, la complessità e variabilità delle alleanze fazionali nel Sacro Collegio frutto di strategie “micropolitiche”, il ruolo presunto o effettivo di questi gruppi nel determinare gli esiti dei conclavi e, finalmente, il “teatro” della politica internazionale in scena alla corte romana. La congiuntura in cui queste plurime negoziazioni interagivano tra loro è quella del rinnovato protagonismo universalistico dell…

ConclaveRoma baroccaBaroque RomeSettore M-STO/07 - Storia Del Cristianesimo E Delle ChieseCardinals' factionGiannettino DoriaSettore M-STO/02 - Storia ModernaConclaviFazioni cardinalizie
researchProduct

A note on rank 2 diagonals

2020

<p>We solve two questions regarding spaces with a (G<sub>δ</sub>)-diagonal of rank 2. One is a question of Basile, Bella and Ridderbos about weakly Lindelöf spaces with a G<sub>δ</sub>-diagonal of rank 2 and the other is a question of Arhangel’skii and Bella asking whether every space with a diagonal of rank 2 and cellularity continuum has cardinality at most continuum.</p>

DiagonalCardinal invariantsMathematics::General TopologyWeakly Lindelöflcsh:AnalysisSpace (mathematics)01 natural sciencesCombinatoricsBELLACardinalitydual propertiesCardinality boundsFOS: MathematicsRank (graph theory)Continuum (set theory)0101 mathematicsDual propertiesMathematics - General TopologyMathematicsweakly LindelofGδ- diagonallcsh:Mathematics010102 general mathematicsGeneral Topology (math.GN)neighbourhood assignmentGδ-diagonallcsh:QA299.6-433lcsh:QA1-939gδ-diagonal010101 applied mathematicscardinality boundsMathematics::LogicNeighbourhood assignmentSettore MAT/03 - GeometriaGeometry and Topologyweakly lindelöf
researchProduct

Point counting on Picard curves in large characteristic

2005

We present an algorithm for computing the cardinality of the Jacobian of a random Picard curve over a finite field. If the underlying field is a prime field Fp, the algorithm has complexity O(p).

Discrete mathematicsAlgebra and Number TheoryApplied MathematicsJacobian varietyGeometryField (mathematics)Computational Mathematicssymbols.namesakeMathematics::Algebraic GeometryFinite fieldPoint countingCardinalityJacobian matrix and determinantsymbolsPicard hornPrime fieldMathematicsMathematics of Computation
researchProduct

A smallest irregular oriented graph containing a given diregular one

2004

AbstractA digraph is called irregular if its vertices have mutually distinct ordered pairs of semi-degrees. Let D be any diregular oriented graph (without loops or 2-dicycles). A smallest irregular oriented graph F, F=F(D), is constructed such that F includes D as an induced subdigraph, the smallest digraph being one with smallest possible order and with smallest possible size. If the digraph D is arcless then V(D) is an independent set of F(D) comprising almost all vertices of F(D) as |V(D)|→∞. The number of irregular oriented graphs is proved to be superexponential in their order. We could not show that almost all oriented graphs are/are not irregular.

Discrete mathematicsAlmost all verticesIrregularizationDigraphDirected graphSuperexponential cardinalityGraphTheoretical Computer ScienceCombinatoricsIndependent setOrdered pairDiscrete Mathematics and CombinatoricsDiregular digraphOriented graphMathematicsDiscrete Mathematics
researchProduct

On the cardinality of almost discretely Lindelof spaces

2016

A space is said to be almost discretely Lindelof if every discrete subset can be covered by a Lindelof subspace. Juhasz et al. (Weakly linearly Lindelof monotonically normal spaces are Lindelof, preprint, arXiv:1610.04506 ) asked whether every almost discretely Lindelof first-countable Hausdorff space has cardinality at most continuum. We prove that this is the case under $$2^{<{\mathfrak {c}}}={\mathfrak {c}}$$ (which is a consequence of Martin’s Axiom, for example) and for Urysohn spaces in ZFC, thus improving a result by Juhasz et al. (First-countable and almost discretely Lindelof $$T_3$$ spaces have cardinality at most continuum, preprint, arXiv:1612.06651 ). We conclude with a few rel…

Discrete mathematicsCardinal inequality Lindelof space Arhangel’skii Theorem elementary submodel left-separated discrete set free sequence.General Mathematics010102 general mathematicsHausdorff spaceGeneral Topology (math.GN)Mathematics::General TopologyMonotonic functionSpace (mathematics)01 natural sciences010101 applied mathematicsMathematics::LogicCardinalityLindelöf spaceFOS: MathematicsSettore MAT/03 - GeometriaContinuum (set theory)0101 mathematicsSubspace topologyAxiomMathematics - General TopologyMathematics
researchProduct

Combinatorial aspects of L-convex polyominoes

2007

We consider the class of L-convex polyominoes, i.e. those polyominoes in which any two cells can be connected with an ''L'' shaped path in one of its four cyclic orientations. The paper proves bijectively that the number f"n of L-convex polyominoes with perimeter 2(n+2) satisfies the linear recurrence relation f"n"+"2=4f"n"+"1-2f"n, by first establishing a recurrence of the same form for the cardinality of the ''2-compositions'' of a natural number n, a simple generalization of the ordinary compositions of n. Then, such 2-compositions are studied and bijectively related to certain words of a regular language over four letters which is in turn bijectively related to L-convex polyominoes. In …

Discrete mathematicsClass (set theory)Mathematics::CombinatoricsPolyominoEnumerationOpen problemGenerating functionRegular polygonPolyominoesNatural numberComputer Science::Computational GeometryFormal SeriesCombinatoricsCardinalityRegular languageDiscrete Mathematics and CombinatoricsTomographyAlgorithmsbinary tomographyMathematicsEnumeration; Formal Series; PolyominoesEuropean Journal of Combinatorics
researchProduct

The article &lt;i&gt;a(n)&lt;/i&gt; in English quantifying expressions: A default marker of cardinality

2020

Certain English quantificational expressions feature what appears to be an indefinite article, e.g. a bunch, a few, a hundred. These can be divided into three types of quantifying expressions: pseudopartitives (a lot, a bunch, a ton), article-requiring quantifiers (a few, a couple, a hundred), and article-free quantifiers (three, many, several); article-free quantifiers have an article under certain circumstances, e.g. modification by an adjective (a surprising 30 …). While standard analyses would take the article in these expressions to be a D head, it is argued here that the article is not in D, nor is it singular or count, as evidenced by its (lack of an) interaction with verbal agreemen…

Discrete mathematicsLinguistics and LanguageHead (linguistics)media_common.quotation_subjectLanguage and LinguisticsAgreementNumeral systemFeature (linguistics)CardinalityQuantifier (linguistics)AdjectiveMathematicsPluralmedia_commonGlossa: a journal of general linguistics
researchProduct

Weak regularity and consecutive topologizations and regularizations of pretopologies

2009

Abstract L. Foged proved that a weakly regular topology on a countable set is regular. In terms of convergence theory, this means that the topological reflection Tξ of a regular pretopology ξ on a countable set is regular. It is proved that this still holds if ξ is a regular σ -compact pretopology. On the other hand, it is proved that for each n ω there is a (regular) pretopology ρ (on a set of cardinality c ) such that ( RT ) k ρ > ( RT ) n ρ for each k n and ( RT ) n ρ is a Hausdorff compact topology, where R is the reflector to regular pretopologies. It is also shown that there exists a regular pretopology of Hausdorff RT -order ⩾ ω 0 . Moreover, all these pretopologies have the property…

Discrete mathematicsPretopologyHausdorff spaceMathematics::General TopologyRegularization (mathematics)CombinatoricsReflection (mathematics)CardinalityMathematics::Category TheoryTopologizationRegularizationOrder (group theory)Countable setGeometry and TopologyMathematicsWeak baseMAD familyTopology and its Applications
researchProduct