Search results for "Cardinali"
showing 10 items of 48 documents
Combinatorial aspects of L-convex polyominoes
2007
We consider the class of L-convex polyominoes, i.e. those polyominoes in which any two cells can be connected with an ''L'' shaped path in one of its four cyclic orientations. The paper proves bijectively that the number f"n of L-convex polyominoes with perimeter 2(n+2) satisfies the linear recurrence relation f"n"+"2=4f"n"+"1-2f"n, by first establishing a recurrence of the same form for the cardinality of the ''2-compositions'' of a natural number n, a simple generalization of the ordinary compositions of n. Then, such 2-compositions are studied and bijectively related to certain words of a regular language over four letters which is in turn bijectively related to L-convex polyominoes. In …
A graph theoretic approach to automata minimality
2012
AbstractThe paper presents a graph-theoretic approach to test the minimality of a deterministic automaton. In particular, we focus on problems concerning the dependence of the minimality of an automaton on the choice of the set F of final states or on the cardinality of the set F. We introduce different minimality conditions of an automaton and show that such conditions can be characterized in graph-theoretic terms.
Completeness number of families of subsets of convergence spaces
2016
International audience; Compactoid and compact families generalize both convergent filters and compact sets. This concept turned out to be useful in various quests, like Scott topologies, triquotient maps and extensions of the Choquet active boundary theorem.The completeness number of a family in a convergence space is the least cardinality of collections of covers for which the family becomes complete. 0-completeness amounts to compactness, finite completeness to relative local compactness and countable completeness to Čech completeness. Countably conditional countable completeness amounts to pseudocompleteness of Oxtoby. Conversely, each completeness class of families can be represented a…
Occlusion-based estimation of independent multinomial random variables using occurrence and sequential information
2017
Abstract This paper deals with the relatively new field of sequence-based estimation in which the goal is to estimate the parameters of a distribution by utilizing both the information in the observations and in their sequence of appearance. Traditionally, the Maximum Likelihood (ML) and Bayesian estimation paradigms work within the model that the data, from which the parameters are to be estimated, is known, and that it is treated as a set rather than as a sequence. The position that we take is that these methods ignore, and thus discard, valuable sequence -based information, and our intention is to obtain ML estimates by “extracting” the information contained in the observations when perc…
Ranking and unrankingk-ary trees with a 4k –4 letter alphabet
1997
Abstract The problem of the direct generation in A-order of binary trees was stated by Zaks in 1980. In 1988 Roelants van Baronaigien and Ruskey gave a solution for k-ary trees with n internal nodes using an encoding sequence of kn+1 integers between 1 and n. Vajnovszki and Pallo improved this result for binary trees in 1994 using words of length n–1 on a four letter alphabet. Recently Korsh generalized the Vajnovszki and Pallo’s generating algorithm to k-ary trees using an alphabet whose cardinality depends on k but not on n. We give in this paper ranking and unranking algorithms for k-ary trees using the Korsh’s encoding scheme.
A Novel Bayesian Network Based Scheme for Finding the Optimal Solution to Stochastic Online Equi-partitioning Problems
2014
A number of intriguing decision scenarios, such as order picking, revolve around partitioning a collection of objects so as to optimize some application specific objective function. In its general form, this problem is referred to as the Object Partitioning Problem (OOP), known to be NP-hard. We here consider a variant of OPP, namely the Stochastic Online Equi-Partitioning Problem (SO-EPP). In SO-EPP, objects arrive sequentially, in pairs. The relationship between the arriving object pairs is stochastic: They belong to the same partition with probability p. From a history of object arrivals, the goal is to predict which objects will appear together in future arrivals. As an additional compl…
I due inediti busti reliquiari d’argento del Tesoro di San Mauro Castelverde (Pa). Don Vincenzo Greco e la circolazione delle reliquie dopo il Concil…
2022
Si esamina la diffusione e la circolazione delle reliquie da Roma alla Sicilia e la conseguente proliferazione, a seguito dei dettami del Concilio di Trento recepiti dai vari Sinodi diocesani, di sacre custodie in metallo prezioso o in legno. Vengono, infatti, indagati alcuni reliquiari d’argento che, custoditi nei Tesori siciliani, sono contestualizzati nella pertinente temperie storico-culturale. Due di essi, inediti e dalla tipologia a busto, sono conservati nel Tesoro della Matrice di San Mauro Castelverde (Pa). Della suppellettile liturgica contenente le sacra vestigia di S. Vittoria, sono stati individuati autore e committenti. L’altra inedita opera, voluta dal marchese Simone I Venti…
A common extension of Arhangel'skii's Theorem and the Hajnal-Juhasz inequality
2019
AbstractWe present a result about $G_{\unicode[STIX]{x1D6FF}}$ covers of a Hausdorff space that implies various known cardinal inequalities, including the following two fundamental results in the theory of cardinal invariants in topology: $|X|\leqslant 2^{L(X)\unicode[STIX]{x1D712}(X)}$ (Arhangel’skiĭ) and $|X|\leqslant 2^{c(X)\unicode[STIX]{x1D712}(X)}$ (Hajnal–Juhász). This solves a question that goes back to Bell, Ginsburg and Woods’s 1978 paper (M. Bell, J.N. Ginsburg and R.G. Woods, Cardinal inequalities for topological spaces involving the weak Lindelöf number, Pacific J. Math. 79(1978), 37–45) and is mentioned in Hodel’s survey on Arhangel’skiĭ’s Theorem (R. Hodel, Arhangel’skii’s so…
Mantica Francesco
2009
Blocking sets and partial spreads in finite projective spaces
1980
A t-blocking set in the finite projective space PG(d, q) with d≥t+1 is a set $$\mathfrak{B}$$ of points such that any (d−t)-dimensional subspace is incident with a point of $$\mathfrak{B}$$ and no t-dimensional subspace is contained in $$\mathfrak{B}$$ . It is shown that | $$\mathfrak{B}$$ |≥q t +...+1+q t−1√q and the examples of minimal cardinality are characterized. Using this result it is possible to prove upper and lower bounds for the cardinality of partial t-spreads in PG(d, q). Finally, examples of blocking sets and maximal partial spreads are given.