Search results for "Cardinali"
showing 10 items of 48 documents
Countably compact weakly Whyburn spaces
2015
The weak Whyburn property is a generalization of the classical sequential property that was studied by many authors. A space X is weakly Whyburn if for every non-closed set \({A \subset X}\) there is a subset \({B \subset A}\) such that \({\overline{B} \setminus A}\) is a singleton. We prove that every countably compact Urysohn space of cardinality smaller than the continuum is weakly Whyburn and show that, consistently, the Urysohn assumption is essential. We also give conditions for a (countably compact) weakly Whyburn space to be pseudoradial and construct a countably compact weakly Whyburn non-pseudoradial regular space, which solves a question asked by Angelo Bella in private communica…
On approximation of a class of stochastic integrals and interpolation
2004
Given a diffusion Y = (Y_{t})_{t \in [0,T]} we give different equivalent conditions so that a stochastic integral has an L 2-approximation rate of n −η, {\rm \eta \in (0,1/2],} if one approximates by integrals over piece-wise constant integrands where equidistant time nets of cardinality n + 1 are used. In particular, we obtain assertions in terms of smoothness properties of g(Y T ) in the sense of Malliavin calculus. After optimizing over non-equidistant time-nets of cardinality n + 1 in case {\rm \eta > 0} , it turns out that one always obtains a rate of n^{ - 1/2}, which is optimal. This applies to all functions g obtained in an appropriate way by the real interpolation method between th…
A graph theoretic approach to automata minimality
2012
AbstractThe paper presents a graph-theoretic approach to test the minimality of a deterministic automaton. In particular, we focus on problems concerning the dependence of the minimality of an automaton on the choice of the set F of final states or on the cardinality of the set F. We introduce different minimality conditions of an automaton and show that such conditions can be characterized in graph-theoretic terms.
Efficient CNF Encoding of Boolean Cardinality Constraints
2003
In this paper, we address the encoding into CNF clauses of Boolean cardinality constraints that arise in many practical applications. The proposed encoding is efficient with respect to unit propagation, which is implemented in almost all complete CNF satisfiability solvers. We prove the practical efficiency of this encoding on some problems arising in discrete tomography that involve many cardinality constraints. This encoding is also used together with a trivial variable elimination in order to re-encode parity learning benchmarks so that a simple Davis and Putnam procedure can solve them.
Almost disjoint families of countable sets and separable complementation properties
2012
We study the separable complementation property (SCP) and its natural variations in Banach spaces of continuous functions over compacta $K_{\mathcal A}$ induced by almost disjoint families ${\mathcal A}$ of countable subsets of uncountable sets. For these spaces, we prove among others that $C(K_{\mathcal A})$ has the controlled variant of the separable complementation property if and only if $C(K_{\mathcal A})$ is Lindel\"of in the weak topology if and only if $K_{\mathcal A}$ is monolithic. We give an example of ${\mathcal A}$ for which $C(K_{\mathcal A})$ has the SCP, while $K_{\mathcal A}$ is not monolithic and an example of a space $C(K_{\mathcal A})$ with controlled and continuous SCP …
Completeness number of families of subsets of convergence spaces
2016
International audience; Compactoid and compact families generalize both convergent filters and compact sets. This concept turned out to be useful in various quests, like Scott topologies, triquotient maps and extensions of the Choquet active boundary theorem.The completeness number of a family in a convergence space is the least cardinality of collections of covers for which the family becomes complete. 0-completeness amounts to compactness, finite completeness to relative local compactness and countable completeness to Čech completeness. Countably conditional countable completeness amounts to pseudocompleteness of Oxtoby. Conversely, each completeness class of families can be represented a…
Primitive sets of words
2020
Given a (finite or infinite) subset $X$ of the free monoid $A^*$ over a finite alphabet $A$, the rank of $X$ is the minimal cardinality of a set $F$ such that $X \subseteq F^*$. We say that a submonoid $M$ generated by $k$ elements of $A^*$ is {\em $k$-maximal} if there does not exist another submonoid generated by at most $k$ words containing $M$. We call a set $X \subseteq A^*$ {\em primitive} if it is the basis of a $|X|$-maximal submonoid. This definition encompasses the notion of primitive word -- in fact, $\{w\}$ is a primitive set if and only if $w$ is a primitive word. By definition, for any set $X$, there exists a primitive set $Y$ such that $X \subseteq Y^*$. We therefore call $Y$…
A two-armed bandit collective for hierarchical examplar based mining of frequent itemsets with applications to intrusion detection
2014
Published version of a chapter in the book: Transactions on Computational Collective Intelligence XIV. Also available from the publisher at: http://dx.doi.org/10.1007/978-3-662-44509-9_1 In this paper we address the above problem by posing frequent item-set mining as a collection of interrelated two-armed bandit problems. We seek to find itemsets that frequently appear as subsets in a stream of itemsets, with the frequency being constrained to support granularity requirements. Starting from a randomly or manually selected examplar itemset, a collective of Tsetlin automata based two-armed bandit players - one automaton for each item in the examplar - learns which items should be included in …
Cardinal Invariants for the $G_\delta$ topology
2017
We prove upper bounds for the spread, the Lindel\"of number and the weak Lindel\"of number of the $G_\delta$-topology on a topological space and apply a few of our bounds to give a short proof to a recent result of Juh\'asz and van Mill regarding the cardinality of a $\sigma$-countably tight homogeneous compactum.
On Sets of Words of Rank Two
2019
Given a (finite or infinite) subset X of the free monoid A∗ over a finite alphabet A, the rank of X is the minimal cardinality of a set F such that X⊆ F∗. A submonoid M generated by k elements of A∗ is k-maximal if there does not exist another submonoid generated by at most k words containing M. We call a set X⊆ A∗ primitive if it is the basis of a |X|-maximal submonoid. This extends the notion of primitive word: indeed, w is a primitive set if and only if w is a primitive word. By definition, for any set X, there exists a primitive set Y such that X⊆ Y∗. The set Y is therefore called a primitive root of X. As a main result, we prove that if a set has rank 2, then it has a unique primitive …