Search results for "Cell Cycle"

showing 10 items of 804 documents

The emerging role of lysine methyltransferase SETD8 in human diseases

2016

SETD8/SET8/Pr-SET7/KMT5A is the only known lysine methyltransferase (KMT) that monomethylates lysine 20 of histone H4 (H4K20) in vivo. Lysine residues of non-histone proteins including proliferating cell nuclear antigen (PCNA) and p53 are also monomethylated. As a consequence, the methyltransferase activity of the enzyme is implicated in many essential cellular processes including DNA replication, DNA damage response, transcription modulation, and cell cycle regulation. This review aims to provide an overview of the roles of SETD8 in physiological and pathological pathways and to discuss the progress made to date in inhibiting the activity of SETD8 by small molecules, with an emphasis on th…

0301 basic medicineMethyltransferaseDNA damageLysineDNA replicationReviewBiologyCell cycleProliferating cell nuclear antigenHistone H403 medical and health sciences030104 developmental biology0302 clinical medicineBiochemistry030220 oncology & carcinogenesisHistone methyltransferaseGeneticsbiology.proteinMolecular BiologyGenetics (clinical)Developmental BiologyClinical Epigenetics
researchProduct

Dysfunctional mitochondrial fission impairs cell reprogramming

2016

We have recently shown that mitochondrial fission is induced early in reprogramming in a Drp1-dependent manner; however, the identity of the factors controlling Drp1 recruitment to mitochondria was unexplored. To investigate this, we used a panel of RNAi targeting factors involved in the regulation of mitochondrial dynamics and we observed that MiD51, Gdap1 and, to a lesser extent, Mff were found to play key roles in this process. Cells derived from Gdap1-null mice were used to further explore the role of this factor in cell reprogramming. Microarray data revealed a prominent down-regulation of cell cycle pathways in Gdap1-null cells early in reprogramming and cell cycle profiling uncovered…

0301 basic medicineMicroarray analysis techniquescell reprogrammingmitochondrial fissionCellCell BiologyBiologyMitochondrionCell cyclepluripotencyCell biology03 medical and health sciencesiPS cells030104 developmental biology0302 clinical medicinemedicine.anatomical_structureRNA interferencemedicineMitochondrial fissionGdap1Induced pluripotent stem cellMolecular BiologyReprogramming030217 neurology & neurosurgeryDevelopmental Biology
researchProduct

A Crucial Role of Mitochondrial Dynamics in Dehydration Resistance in Saccharomyces cerevisiae

2021

Mitochondria are dynamic organelles as they continuously undergo fission and fusion. These dynamic processes conduct not only mitochondrial network morphology but also activity regulation and quality control. Saccharomyces cerevisiae has a remarkable capacity to resist stress from dehydration/rehydration. Although mitochondria are noted for their role in desiccation tolerance, the mechanisms underlying these processes remains obscure. Here, we report that yeast cells that went through stationary growth phase have a better survival rate after dehydration/rehydration. Dynamic defective yeast cells with reduced mitochondrial genome cannot maintain the mitochondrial activity and survival rate o…

0301 basic medicineMitochondrial DNASaccharomyces cerevisiae ProteinsQH301-705.5030106 microbiologySaccharomyces cerevisiaeSaccharomyces cerevisiaeMitochondrionyeastMitochondrial DynamicsCatalysisArticleInorganic ChemistryDesiccation tolerance03 medical and health sciencesmedicineDehydrationPhysical and Theoretical ChemistryBiology (General)DesiccationMolecular BiologyQD1-999SpectroscopyMicrobial ViabilitybiologyDehydrationChemistryOrganic ChemistryCell CycleWild typeGeneral Medicinedynamicsmedicine.diseasebiology.organism_classificationYeastComputer Science ApplicationsCell biologyMitochondriaChemistry030104 developmental biologymitochondrial fusionGenome MitochondrialInternational Journal of Molecular Sciences
researchProduct

New Functions of APC/C Ubiquitin Ligase in the Nervous System and Its Role in Alzheimer’s Disease

2017

The E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) regulates important processes in cells, such as the cell cycle, by targeting a set of substrates for degradation. In the last decade, APC/C has been related to several major functions in the nervous system, including axon guidance, synaptic plasticity, neurogenesis, and neuronal survival. Interestingly, some of the identified APC/C substrates have been related to neurodegenerative diseases. There is an accumulation of some degradation targets of APC/C in Alzheimer’s disease (AD) brains, which suggests a dysregulation of the protein complex in the disorder. Moreover, recently evidence has been provided for an inactivation o…

0301 basic medicineNervous systemNeurogenesisUbiquitin-Protein LigasesReviewubiquitin ligaseNervous SystemCatalysisAnaphase-Promoting Complex-CyclosomeCdh1 ProteinsInorganic Chemistrylcsh:Chemistry03 medical and health sciencesMiceAlzheimer Diseasemedicineoxidative stressAnimalsHumansPhysical and Theoretical ChemistryMolecular Biologylcsh:QH301-705.5SpectroscopyNeuronsNeuronal PlasticitybiologyOrganic ChemistryNeurodegenerationNeurogenesisCell CycleneurodegenerationGeneral MedicineCell cyclemedicine.diseaseComputer Science ApplicationsUbiquitin ligaseCell biology030104 developmental biologymedicine.anatomical_structurelcsh:Biology (General)lcsh:QD1-999ImmunologyKnockout mouseProteolysisbiology.proteinAxon guidanceAnaphase-promoting complexexcitotoxicityInternational Journal of Molecular Sciences
researchProduct

Unique Organization of the Nuclear Envelope in the Post-natal Quiescent Neural Stem Cells

2017

Summary Neural stem cells (B1 astrocytes; NSCs) in the adult ventricular-subventricular-zone (V-SVZ) originate in the embryo. Surprisingly, recent work has shown that B1 cells remain largely quiescent. They are reactivated postnatally to function as primary progenitors for neurons destined for the olfactory bulb and some corpus callosum oligodendrocytes. The cellular and molecular properties of quiescent B1 cells remain unknown. Here we found that a subpopulation of B1 cells has a unique nuclear envelope invagination specialization similar to envelope-limited chromatin sheets (ELCS), reported in certain lymphocytes and some cancer cells. Using molecular markers, [3H]thymidine birth-dating, …

0301 basic medicineNuclear EnvelopeV-SVZBiologyBiochemistry*nuclear ELCSArticleMice03 medical and health sciences*neural stem cellsNeural Stem CellsLateral VentriclesGeneticsAnimalsquiescenceProgenitor celllcsh:QH301-705.5Cells CulturedGeneticslcsh:R5-920*quiescencenuclear envelope invaginationsCell CycleCell Biology*V-SVZnuclear ELCS*nuclear envelope invaginationsEmbryonic stem cellChromatinNeural stem cellOlfactory bulbCell biologyChromatinB-1 cellAdult Stem Cells030104 developmental biologylcsh:Biology (General)nervous systemAstrocytesCancer celllcsh:Medicine (General)Developmental BiologyAdult stem cell
researchProduct

PTTG1-interacting protein (PTTG1IP/PBF) predicts breast cancer survival.

2017

Background: PTTG1-interacting protein (PTTG1IP) is an oncogenic protein, which participates in metaphase-anaphase transition of the cell cycle through activation of securin (PTTG1). PTTG1IP promotes the shift of securin from the cell cytoplasm to the nucleus, allowing the interaction between separase and securin. PTTG1IP overexpression has been previously observed in malignant disease, e.g. in breast carcinoma. However, the prognostic value of PTTG1IP in breast carcinoma patients has not previously been revealed. Methods: A total of 497 breast carcinoma patients with up to 22-year follow-up were analysed for PTTG1IP and securin immunoexpression. The results were evaluated for correlations w…

0301 basic medicineOncologyCancer ResearchTriple Negative Breast NeoplasmsKaplan-Meier EstimatePBF0302 clinical medicineBreast cancerSurgical oncologyRisk FactorsAged 80 and overrintasyöpäPTTG1 interacting proteinIntracellular Signaling Peptides and ProteinsCell cycleMiddle Agedlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensPrognosisImmunohistochemistrySecurinsyöpägeenitOncologySecurin030220 oncology & carcinogenesisImmunohistochemistryFemaleSeparaseBreast carcinomaResearch ArticleAdultmedicine.medical_specialtyPTTG1IPBreast Neoplasmslcsh:RC254-282immunohistokemia03 medical and health sciencesBreast cancerInternal medicineGeneticsmedicineBiomarkers TumorHumansAgedbusiness.industryMembrane Proteinsmedicine.disease030104 developmental biologyMultivariate AnalysisCancer researchprognosisproteiinitbusinessBMC cancer
researchProduct

Phospho-Akt overexpression is prognostic and can be used to tailor the synergistic interaction of Akt inhibitors with gemcitabine in pancreatic cancer

2017

Background There is increasing evidence of a constitutive activation of Akt in pancreatic ductal adenocarcinoma (PDAC), associated with poor prognosis and chemoresistance. Therefore, we evaluated the expression of phospho-Akt in PDAC tissues and cells, and investigated molecular mechanisms influencing the therapeutic potential of Akt inhibition in combination with gemcitabine. Methods Phospho-Akt expression was evaluated by immunohistochemistry in tissue microarrays (TMAs) with specimens tissue from radically-resected patients (n = 100). Data were analyzed by Fisher and log-rank test. In vitro studies were performed in 14 PDAC cells, including seven primary cultures, characterized for their…

0301 basic medicineOncologyMaleCancer ResearchBiopsyAKT1ApoptosisAkt; Gemcitabine; Pancreatic ductal adenocarcinoma; Synergism; Hematology; Molecular Biology; Oncology; Cancer ResearchDeoxycytidinePancreatic ductal adenocarcinoma0302 clinical medicineCell MovementTumor Cells CulturedGlucose Transporter Type 1medicine.diagnostic_testChemistryCell CyclePancreatic NeoplasmDrug Synergismlcsh:Diseases of the blood and blood-forming organsHematologyCell cycleMiddle Agedlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensPrognosisOncologyAkt; Gemcitabine; Pancreatic ductal adenocarcinoma; Synergism; Aged; Apoptosis; Biopsy; Carcinoma Pancreatic Ductal; Cell Cycle; Cell Movement; Deoxycytidine; Drug Synergism; Female; Glucose Transporter Type 1; Humans; Male; Middle Aged; Pancreatic Neoplasms; Phosphoproteins; Prognosis; Proto-Oncogene Proteins c-akt; RNA Messenger; Spheroids Cellular; Tumor Cells Cultured; Hematology; Molecular Biology; Oncology; Cancer Research030220 oncology & carcinogenesisPhosphoproteinFemalemedicine.drugHumanCarcinoma Pancreatic Ductalmedicine.medical_specialtyPrognosilcsh:RC254-282Flow cytometry03 medical and health sciencesInternal medicinePancreatic cancerSpheroids CellularmedicineHumansRNA MessengerProtein kinase BMolecular BiologyPI3K/AKT/mTOR pathwayAgedlcsh:RC633-647.5ResearchAktSynergismApoptosimedicine.diseasePhosphoproteinsGemcitabineGemcitabinePancreatic Neoplasms030104 developmental biologyCancer cellCancer researchProto-Oncogene Proteins c-akt
researchProduct

The role of miR-26a and miR-30b in HER2+ breast cancer trastuzumab resistance and regulation of the CCNE2 gene

2016

AbstractA subset of HER2+ breast cancer patients manifest clinical resistance to trastuzumab. Recently, miR-26a and miR-30b have been identified as trastuzumab response regulators, and their target gene CCNE2 seems to play an important role in resistance to trastuzumab therapy. Cell viability was evaluated in trastuzumab treated HER2+ BT474 wt (sensitive), BT474r (acquired resistance), HCC1954 (innate resistance), and MDA-MB-231 (HER2−) cell lines, and the expression of miR-26a, miR-30b, and their target genes was measured. BT474 wt cell viability decreased by 60% and miR-26a and miR-30b were significantly overexpressed (~3-fold, p = 0.003 and p = 0.002, respectively) after trastuzumab trea…

0301 basic medicineOncologyMama -- Càncer -- Aspectes genèticsmedicine.medical_specialtyCell SurvivalReceptor ErbB-2Down-RegulationMama -- Càncer -- TractamentBreast NeoplasmsDrug resistanceArticle03 medical and health sciences0302 clinical medicineBreast cancerTrastuzumabInternal medicineCell Line TumorCyclinsmedicineGene silencingHumansViability assayGene SilencingReceptorskin and connective tissue diseasesneoplasmsRegulation of gene expressionMultidisciplinarybusiness.industryCell CycleTrastuzumabmedicine.diseaseNeoplasm ProteinsGene Expression Regulation NeoplasticMicroRNAs030104 developmental biologyCell cultureDrug Resistance Neoplasm030220 oncology & carcinogenesisFemalebusinessmedicine.drugScientific Reports
researchProduct

Suppressive role exerted by microRNA-29b-1-5p in triple negative breast cancer through SPIN1 regulation

2017

MiR-29 family dysregulation occurs in various cancers including breast cancers. We investigated miR-29b-1 functional role in human triple negative breast cancer (TNBC) the most aggressive breast cancer subtype. We found that miR-29b-1-5p was downregulated in human TNBC tissues and cell lines. To assess whether miR- 29b-1-5p correlated with TNBC regenerative potential, we evaluated cancer stem cell enrichment in our TNBC cell lines, and found that only MDA-MB-231 and BT-20 produced primary, secondary and tertiary mammospheres, which were progressively enriched in OCT4, NANOG and SOX2 stemness genes. MiR-29b-1-5p expression inversely correlated with mammosphere stemness potential, and miR-29b…

0301 basic medicineOncologycancer stem cellsCarcinogenesisCell Cycle ProteinsTriple Negative Breast NeoplasmsMicroRNA 29b0302 clinical medicineCell MovementSettore BIO/10 - BiochimicaCancer stem cells; MiR-29b-1; SPIN1; Triple-negative breast cancer; Wnt/β-catenin and Akt signaling pathwaysMedicineBreastBreast -- CancerTriple-negative breast cancerWnt signaling pathwayMicroRNANanog Homeobox ProteinGene Expression Regulation NeoplasticOncologyWnt/β-catenin and Akt signaling pathway030220 oncology & carcinogenesisMiR-29b-1Wnt/β-catenin and Akt signaling pathwaysNeoplastic Stem Cellstriple-negative breast cancerFemaleMicrotubule-Associated ProteinsSignal TransductionResearch Papermedicine.medical_specialtycancer stem cellPaclitaxelDown-Regulation03 medical and health sciencesBreast cancerSOX2Cancer stem cellInternal medicineCell Line TumormicroRNAHumansNeoplasm InvasivenessCell ProliferationSPIN1business.industrySOXB1 Transcription Factorsmedicine.diseasePhosphoproteinsMolecular medicineAntineoplastic Agents PhytogenicMicroRNAs030104 developmental biologyDrug Resistance NeoplasmbusinessOctamer Transcription Factor-3
researchProduct

Cytotoxicity and mode of action of a naturally occurring naphthoquinone, 2-acetyl-7-methoxynaphtho[2,3-b]furan-4,9-quinone towards multi-factorial dr…

2017

Abstract Introduction Malignacies are still a major public concern worldwide and despite the intensive search of new chemotherapeutic agents, treatment still remains a challenging issue. The present study was designed to evaluate the cytotoxicity of 2-acetyl-7-methoxynaphtho[2,3-b]furan-4,9-quinone (AMNQ) isolated from the bark of Milletia versicolor towards a panel of drug-sensitive and multidrug-resistant (MDR) cancer cell lines. Methods The resazurin reduction assay was used to evaluate the cytotoxicity of AMNQ against 9 drug-sensitive and multidrug-resistant (MDR) cancer cell lines. Cell cycle, mitochondrial membrane potential (MMP) and levels of reactive oxygen species were all analyze…

0301 basic medicinePharmaceutical ScienceApoptosisPharmacologyFlow cytometry03 medical and health sciences0302 clinical medicineCell Line TumorDrug DiscoverymedicineHumansCytotoxic T cellCytotoxicityMembrane Potential MitochondrialPharmacologymedicine.diagnostic_testPlant ExtractsChemistryCell CycleCancerCell cyclemedicine.diseaseAntineoplastic Agents PhytogenicDrug Resistance MultipleMultiple drug resistance030104 developmental biologyComplementary and alternative medicineDoxorubicinDrug Resistance NeoplasmApoptosisCaspases030220 oncology & carcinogenesisCancer cellCancer researchMolecular MedicineReactive Oxygen SpeciesNaphthoquinonesPhytomedicine
researchProduct