Search results for "Cell Proliferation"

showing 10 items of 1056 documents

Stem cells distribution, cellular proliferation and migration in the adult Austrolebias charrua brain.

2017

Our previous studies demonstrated that Austrolebias charrua annual fish is an excellent model to study adult brain cell proliferation and neurogenesis due to the presence of active and fast neurogenesis in several regions during its short lifespan. Our main goal was to identify and localize the cells that compose the neurogenic areas throughout the Austrolebias brain. To do this, we used two thymidine halogenated analogs to detect cell proliferation at different survival times: 5-chloro-2'-deoxyuridine (CldU) at 1day and 5-iodo-2'-deoxyuridine (IdU) at 30days. Three types of proliferating cells were identified: I - transient amplifying or fast cycling cells that uptake CldU; II - stem cells…

0301 basic medicineMalePopulationVimentinCell Count03 medical and health sciencesCyprinodontiformes0302 clinical medicineImaging Three-DimensionalCell MovementAnimalsStem Cell NicheeducationColoring AgentsMolecular BiologyCell Proliferationeducation.field_of_studybiologyCell growthGeneral NeuroscienceStem CellsNeurogenesisBrainAnatomyNestinbiology.organism_classificationImmunohistochemistryCell biologyMethylene Blue030104 developmental biologybiology.proteinNeurology (clinical)NeuNStem cell030217 neurology & neurosurgeryAustrolebiasDevelopmental BiologyBrain research
researchProduct

Blocking CD248 molecules in perivascular stromal cells of patients with systemic sclerosis strongly inhibits their differentiation toward myofibrobla…

2018

Abstract Background Fibrosis may be considered the hallmark of systemic sclerosis (SSc), the end stage triggered by different pathological events. Transforming growth factor-β (TGF-β) and platelet-derived growth factor BB (PDGF-BB) are profibrotic molecules modulating myofibroblast differentiation and proliferation, respectively. There is evidence linking CD248 with these two molecules, both highly expressed in patients with SSc, and suggesting that CD248 may be a therapeutic target for several diseases. The aim of this work was to evaluate the expression of CD248 in SSc skin and its ability to modulate SSc fibrotic process. Methods After ethical approval was obtained, skin biopsies were co…

0301 basic medicineMalelcsh:Diseases of the musculoskeletal systemProton Pump InhibitorFibrosiCellular differentiationmedicine.medical_treatmentSystemic sclerosiFibrosisImmunology and AllergyMedicineMyofibroblastsskin and connective tissue diseasesCells CulturedSkinintegumentary systemCell DifferentiationMiddle AgedMesenchymal Stem CellBenzamidesSystemic sclerosisFemaleMyofibroblastResearch ArticleHumanAdultStromal cellImmunology03 medical and health sciencesYoung AdultRheumatologyBenzamideAntigens CDAntigens NeoplasmHumansGene silencingCell ProliferationMyofibroblastScleroderma Systemicbusiness.industryGrowth factorMesenchymal stem cellStromal CellMesenchymal Stem CellsProton Pump Inhibitorsmedicine.diseaseFibrosisCD248Settore MED/16 - Reumatologia030104 developmental biologyCancer researchStromal Cellslcsh:RC925-935CD248; Fibrosis; Systemic sclerosis; Rheumatology; Immunology and Allergy; ImmunologybusinessTransforming growth factor
researchProduct

EGFL7 enhances surface expression of integrin α5β1 to promote angiogenesis in malignant brain tumors

2018

Abstract Glioblastoma (GBM) is a typically lethal type of brain tumor with a median survival of 15 months postdiagnosis. This negative prognosis prompted the exploration of alternative treatment options. In particular, the reliance of GBM on angiogenesis triggered the development of anti‐VEGF (vascular endothelial growth factor) blocking antibodies such as bevacizumab. Although its application in human GBM only increased progression‐free periods but did not improve overall survival, physicians and researchers still utilize this treatment option due to the lack of adequate alternatives. In an attempt to improve the efficacy of anti‐VEGF treatment, we explored the role of the egfl7 gene in ma…

0301 basic medicineMedicine (General)Vascular Biology & AngiogenesisAngiogenesisEndothelial Growth FactorsQH426-470chemistry.chemical_compoundangiogenesisMice0302 clinical medicineAntineoplastic Agents ImmunologicalResearch ArticlesCancerNeovascularization PathologicBrain NeoplasmsEndothelial stem cellVascular endothelial growth factormedicine.anatomical_structureTreatment Outcome030220 oncology & carcinogenesisendothelial cellMolecular MedicineHeterograftsEGFL7PericyteEGFL7medicine.drugResearch ArticleIntegrin alpha5beta1EGF Family of ProteinsintegrinBrain tumor03 medical and health sciencesR5-920GliomamedicineGeneticsHuman Umbilical Vein Endothelial CellsAnimalsHumansddc:610Cell ProliferationTemozolomidebusiness.industryCalcium-Binding ProteinsglioblastomaEndothelial Cellsmedicine.diseaseSurvival AnalysisDisease Models Animal030104 developmental biologychemistryCancer researchbusinessNeoplasm TransplantationNeuroscienceEMBO Molecular Medicine
researchProduct

Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous Leukemia cell growth

2017

Despite Imatinib (IM), a selective inhibitor of Bcr-Abl, having led to improved prognosis in Chronic Myeloid Leukemia (CML) patients, acquired resistance and long-term adverse effects is still being encountered. There is, therefore, urgent need to develop alternative strategies to overcome drug resistance. According to the molecules expressed on their surface, exosomes can target specific cells. Exosomes can also be loaded with a variety of molecules, thereby acting as a vehicle for the delivery of therapeutic agents. In this study, we engineered HEK293T cells to express the exosomal protein Lamp2b, fused to a fragment of Interleukin 3 (IL3). The IL3 receptor (IL3-R) is overexpressed in CML…

0301 basic medicineMedicine (miscellaneous)PharmacologyEngineered exosomeExosomesInterleukin 3Antineoplastic AgentMiceHEK293 Cellhemic and lymphatic diseasesDrug CarrierPharmacology Toxicology and Pharmaceutics (miscellaneous)Drug CarriersChronic myeloid leukemiaMyeloid leukemiaChronic myeloid leukemia; Drug delivery; Drug resistance; Engineered exosomes; Interleukin 3; Animals; Antineoplastic Agents; Cell Line Tumor; Cell Proliferation; Disease Models Animal; Drug Carriers; Exosomes; HEK293 Cells; Heterografts; Humans; Imatinib Mesylate; Leukemia Myelogenous Chronic BCR-ABL Positive; Mice; Receptors Interleukin-3; Treatment Outcome3. Good healthTreatment OutcomeImatinib MesylateHeterograftsHeterograftResearch Papermedicine.drugHumanEngineered exosomesAntineoplastic Agents03 medical and health sciencesIn vivoCell Line TumorLeukemia Myelogenous Chronic BCR-ABL PositivemedicineAnimalsHumansneoplasmsInterleukin 3.Interleukin 3Cell Proliferationbusiness.industryAnimalImatinibmedicine.diseaseMicrovesiclesReceptors Interleukin-3ExosomeDisease Models AnimalHEK293 Cells030104 developmental biologyImatinib mesylateDrug resistanceCancer cellDrug deliverybusinessChronic myelogenous leukemia
researchProduct

A 13 mer LNA-i-miR-221 Inhibitor Restores Drug Sensitivity in Melphalan-Refractory Multiple Myeloma Cells.

2016

Abstract Purpose: The onset of drug resistance is a major cause of treatment failure in multiple myeloma. Although increasing evidence is defining the role of miRNAs in mediating drug resistance, their potential activity as drug-sensitizing agents has not yet been investigated in multiple myeloma. Experimental Design: Here we studied the potential utility of miR-221/222 inhibition in sensitizing refractory multiple myeloma cells to melphalan. Results: miR-221/222 expression inversely correlated with melphalan sensitivity of multiple myeloma cells. Inhibition of miR-221/222 overcame melphalan resistance and triggered apoptosis of multiple myeloma cells in vitro, in the presence or absence of…

0301 basic medicineMelphalanCancer ResearchStromal cellApoptosisDrug resistancePharmacologyArticle03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicinemyeloma microRNA mir-221 melphalanimmune system diseasesIn vivohemic and lymphatic diseasesCell Line TumorProto-Oncogene ProteinsmedicineAnimalsHumansMelphalanMultiple myelomaNOD miceCell Proliferationbusiness.industryCancermedicine.diseaseXenograft Model Antitumor AssaysGene Expression Regulation NeoplasticMicroRNAs030104 developmental biologyOncologychemistryDrug Resistance Neoplasm030220 oncology & carcinogenesisGrowth inhibitionMultidrug Resistance-Associated ProteinsbusinessApoptosis Regulatory ProteinsMultiple Myelomamedicine.drugClinical cancer research : an official journal of the American Association for Cancer Research
researchProduct

IL-34–Dependent Intrarenal and Systemic Mechanisms Promote Lupus Nephritis in MRL-Faslpr Mice

2019

Background In people with SLE and in the MRL- Fas lpr lupus mouse model, macrophages and autoantibodies are central to lupus nephritis. IL-34 mediates macrophage survival and proliferation, is expressed by tubular epithelial cells (TECs), and binds to the cFMS receptor on macrophages and to a newly identified second receptor, PTPRZ. Methods To investigate whether IL-34–dependent intrarenal and systemic mechanisms promote lupus nephritis, we compared lupus nephritis and systemic illness in MRL- Fas lpr mice expressing IL-34 and IL-34 knockout (KO) MRL- Fas lpr mice. We also assessed expression of IL-34 and the cFMS and PTPRZ receptors in patients with lupus nephritis. Results Intrarenal IL-3…

0301 basic medicineMice Inbred MRL lprChemokineCell SurvivalLupus nephritisRisk AssessmentMonocytesMice03 medical and health sciences0302 clinical medicineSpecies Specificityimmune system diseasesmedicineAnimalsMacrophageMolecular Targeted Therapyskin and connective tissue diseasesCells CulturedCell ProliferationMice KnockoutSystemic lupus erythematosusCell Deathbiologybusiness.industryInterleukinsMacrophagesGeneral MedicineMonocyte proliferationmedicine.diseaseLupus NephritisMice Inbred C57BLDisease Models AnimalBasic ResearchKidney Tubules030104 developmental biologyGene Expression RegulationNephrology030220 oncology & carcinogenesisImmunologyKnockout mouseDisease Progressionbiology.proteinChemokinesbusinessMacrophage proliferationNephritisJournal of the American Society of Nephrology
researchProduct

Evaluation of cytocompatibility of calcium silicate-based endodontic sealers and their effects on the biological responses of mesenchymal dental stem…

2015

Aim To investigate in vitro the cytocompatibility of the calcium silicate-containing endodontic sealers MTA Fillapex and TotalFill BC Sealer on human periodontal ligament stem cells (hPDLSCs) by assaying their biological responses and compare them with that observed when using an epoxy resin-based sealer (AH Plus). Methodology Specimens from the three different endodontic sealers were eluated with culture medium for 24 h. The cytotoxicity of these eluates was evaluated using the MTT assay. In addition, an in vitro scratch wound healing model was used to determine their effects on cell migration. Cell adhesion to collagen type I after treatment with the different sealer eluates was also meas…

0301 basic medicineMineral trioxide aggregateMaterials sciencePeriodontal ligament stem cellsCell SurvivalPeriodontal LigamentCell morphologyAndrologyRoot Canal Filling Materials03 medical and health sciences0302 clinical medicineCell MovementMaterials TestingCell AdhesionHumansMTT assayCytotoxicityGeneral DentistryCells CulturedCell ProliferationCell growthSilicatesStem CellsMesenchymal stem cell030206 dentistryAdhesionCalcium Compounds030104 developmental biologyBiomedical engineeringInternational endodontic journal
researchProduct

Immunmodulatory and Antiproliferative Properties of Rhodiola Species.

2016

The traditional medicines of Asia and Europe have long used various Rhodiola species, which are endemic to the subarctic areas of the northern hemisphere, as tonic, adaptogen, antidepressant, and anti-inflammatory drugs. In order to establish the therapeutic uses of these plants in modern medicine, the pharmacological effects of Rhodiola sp. have been widely studied. Indeed, the most amply researched species, Rhodiola rosea, has been shown to possess antioxidant, adaptogenic, antistress, antimicrobial, immunomodulatory, angiomodulatory, and antitumoral effects. Salidroside (p-hydroxyphenethyl-β-D-glucoside), a major compound in Rhodiola, seems to be responsible for many of the effects obser…

0301 basic medicineModern medicineRhodiola algidaImmunologic Factorsmedicine.medical_treatmentPharmaceutical SciencePharmacologyAnalytical Chemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineGlucosidesPhenolsSpecies SpecificityDrug DiscoveryAdaptogenRhodiolamedicineAnimalsHumansImmunologic FactorsRhodiola crenulataCell ProliferationPharmacologybiologyTraditional medicinePlant ExtractsOrganic ChemistrySalidrosidebiology.organism_classificationAntineoplastic Agents Phytogenic030104 developmental biologyRhodiola roseaComplementary and alternative medicinechemistry030220 oncology & carcinogenesisMolecular MedicineRhodiolaPlanta medica
researchProduct

Stem Cell-Derived, microRNA-Carrying Extracellular Vesicles: A Novel Approach to Interfering with Mesangial Cell Collagen Production in a Hyperglycae…

2016

Extracellular vesicles (EVs) that are derived from stem cells are proving to be promising therapeutic options. We herein investigate the therapeutic potential of EVs that have been derived from different stem cell sources, bone-marrow (MSC) and human liver (HLSC), on mesangial cells (MCs) exposed to hyperglycaemia. By expressing a dominant negative STAT5 construct (ΔNSTAT5) in HG-cultured MCs, we have demonstrated that miR-21 expression is under the control of STAT5, which translates into Transforming Growth Factor beta (TGFβ) expression and collagen production. A number of approaches have been used to show that both MSC- and HLSC-derived EVs protect MCs from HG-induced damage via the trans…

0301 basic medicineMolecular biologyCellGene Expressionlcsh:MedicineBiochemistry0302 clinical medicineAnimal CellsChronic Kidney DiseaseMedicine and Health SciencesSTAT5 Transcription FactorRNA Processing Post-Transcriptionallcsh:ScienceSTAT5Energy-Producing OrganellesCells CulturedMultidisciplinarybiologyMesangial cellStem CellsVector ConstructionCell biologyMitochondriaEnzymesmedicine.anatomical_structureBiochemistryNephrology030220 oncology & carcinogenesisMesangial CellsCollagenStem cellCellular TypesCellular Structures and OrganellesOxidoreductasesLuciferaseResearch ArticleCollagen Type IVBioenergeticsDNA constructionModels Biological03 medical and health sciencesExtracellular VesiclesmicroRNAmedicineGene Expression and Vector TechniquesGeneticsHumansVesiclesCell ProliferationMolecular Biology Assays and Analysis TechniquesCell growthMesenchymal stem celllcsh:RBiology and Life SciencesProteinsMesenchymal Stem CellsTransforming growth factor betaCell BiologyResearch and analysis methodsMicroRNAs030104 developmental biologyMolecular biology techniquesGlucoseHyperglycemiabiology.proteinEnzymologylcsh:QCollagensPLoS ONE
researchProduct

Identification of the Privileged Position in the Imidazo[1,2-a]pyridine Ring of Phosphonocarboxylates for Development of Rab Geranylgeranyl Transfera…

2017

Members of the Rab GTPase family are master regulators of vesicle trafficking. When disregulated, they are associated with a number of pathological states. The inhibition of RGGT, an enzyme responsible for post-translational geranylgeranylation of Rab GTPases represents one way to control the activity of these proteins. Because the number of molecules modulating RGGT is limited, we combined molecular modeling with biological assays to ascertain how modifications of phosphonocarboxylates, the first reported RGGT inhibitors, rationally improve understanding of their structure-activity relationship. We have identified the privileged position in the core scaffold of the imidazo[1,2-a]pyridine r…

0301 basic medicineMolecular modelPyridinesOrganophosphonatesProtein PrenylationAntineoplastic AgentsGTPase01 natural sciencesHeLa03 medical and health sciencesStructure-Activity RelationshipGeranylgeranylationPrenylationDrug DiscoveryStructure–activity relationshipHumansEnzyme Inhibitorsta116Cell Proliferationchemistry.chemical_classificationAlkyl and Aryl Transferasesbiology010405 organic chemistryrab geranylgeranyl transferaseta1182biology.organism_classification0104 chemical sciencesCell biologyMolecular Docking Simulation030104 developmental biologyEnzymechemistryBiochemistryrab GTP-Binding ProteinsMolecular MedicineRabHeLa CellsJournal of Medicinal Chemistry
researchProduct