Search results for "Cell cycle and cell division"

showing 2 items of 12 documents

PML nuclear body-residing proteins sequentially associate with HPV genome after infectious nuclear delivery.

2019

Subnuclear promyelocytic leukemia (PML) nuclear bodies (NBs) are targeted by many DNA viruses after nuclear delivery. PML protein is essential for formation of PML NBs. Sp100 and Small Ubiquitin-Like Modifier (SUMO) are also permanently residing within PML NBs. Often, large DNA viruses disassemble and reorganize PML NBs to counteract their intrinsic antiviral activity and support establishment of infection. However, human papillomavirus (HPV) requires PML protein to retain incoming viral DNA in the nucleus for subsequent efficient transcription. In contrast, Sp100 was identified as a restriction factor for HPV. These findings suggested that PML NBs are important regulators of early stages o…

Viral DiseasesPhysiologyvirusesIntranuclear Inclusion BodiesPromyelocytic Leukemia ProteinVirus ReplicationBiochemistryAutoantigensImmune PhysiologyMedicine and Health SciencesCell Cycle and Cell DivisionNuclear proteinBiology (General)PapillomaviridaeStaining0303 health sciencesViral GenomicsImmune System ProteinsChromosome Biology030302 biochemistry & molecular biologyCell StainingTotal Cell CountingNuclear Proteinsvirus diseasesAntigens NuclearGenomicsCell biologymedicine.anatomical_structureInfectious DiseasesCapsidCell ProcessesViral GenomeCellular Structures and OrganellesIntranuclear SpaceResearch ArticleHuman Papillomavirus InfectionQH301-705.5UrologyImmunologyCell Enumeration TechniquesSUMO-1 ProteinSexually Transmitted DiseasesMitosisMicrobial GenomicsGenome ViralBiologyResearch and Analysis MethodsMicrobiologyVirusAntibodies03 medical and health sciencesPromyelocytic leukemia proteinVirologyNuclear BodiesmedicineGeneticsHumansVesiclesMolecular BiologyMitosisTranscription factor030304 developmental biologyCell NucleusGenitourinary InfectionsTumor Suppressor ProteinsBiology and Life SciencesProteinsCell BiologyRC581-607Cell nucleusViral replicationSpecimen Preparation and Treatmentbiology.proteinParasitologyCapsid ProteinsImmunologic diseases. AllergyTranscription FactorsPLoS Pathogens
researchProduct

CVB3 VP1 interacts with MAT1 to inhibit cell proliferation by interfering with Cdk-activating kinase complex activity in CVB3-induced acute pancreati…

2021

Coxsackievirus B3 (CVB3) belongs to the genus Enterovirus of the family Picornaviridae and can cause acute acinar pancreatitis in adults. However, the molecular mechanisms of pathogenesis underlying CVB3-induced acute pancreatitis have remained unclear. In this study, we discovered that CVB3 capsid protein VP1 inhibited pancreatic cell proliferation and exerted strong cytopathic effects on HPAC cells. Through yeast two-hybrid, co-immunoprecipitation, and confocal microscopy, we show that Menage a trois 1 (MAT1), a subunit of the Cdk-Activating Kinase (CAK) complex involved in cell proliferation and transcription, is a novel interaction protein with CVB3 VP1. Moreover, CVB3 VP1 inhibited MAT…

virusesCultured tumor cellsSynthesis PhaseCell Cycle ProteinsBiochemistryCell Cycle and Cell DivisionBiology (General)PhosphorylationPost-Translational ModificationCyclin0303 health sciencesbiologyKinaseChemistry030302 biochemistry & molecular biologyRetinoblastoma proteinvirus diseasesCell DifferentiationTransfectionCyclin-Dependent KinasesCell biologyEnterovirus B HumanCell ProcessesPhosphorylationCell linesBiological culturesResearch ArticleQH301-705.5Protein subunitImmunologyCoxsackievirus InfectionsTransfectionResearch and Analysis MethodsMicrobiology03 medical and health sciencesVirologyCyclinsGeneticsHumansHeLa cellsMolecular Biology TechniquesMolecular Biology030304 developmental biologyCell ProliferationCell growthG1 PhaseBiology and Life SciencesProteinsCell Cycle CheckpointsCell BiologyRC581-607Cell culturesPancreatitisbiology.proteinParasitologyCapsid ProteinsImmunologic diseases. AllergyCyclin-dependent kinase 7Cyclin-Dependent Kinase-Activating KinaseTranscription FactorsPLoS pathogens
researchProduct