Search results for "Cell cycle"

showing 10 items of 804 documents

GLUT-1 staining of squamous cell carcinomas of the uterine cervix identifies a novel element of invasion.

2010

Perturbation of the normal tissue architecture in solid malignant tumors is perceived to be the consequence of actively migrating cancer cells which invade the adjacent normal host tissue. The opposite, invasion of cancer cell clusters by a vascularized stroma, has not been considered. The latter process should, however, be expected to occur since the hypoxic cores of tumor cell aggregates, under the control of HIF-1, are known to secrete cytokines (e.g., bFGF, VEGF) which attract fibroblasts and induce blood vessel formation. In this study, the expression of glucose transporter (GLUT)-1, a major HIF-1 target gene, was examined in 51 squamous cell carcinomas of the uterine cervix by immunoh…

Cancer ResearchPathologymedicine.medical_specialtyStromal cellAngiogenesisCellUterine Cervical NeoplasmsBiologyMetastasisStromamedicineHumansNeoplasm InvasivenessProspective StudiesCell ShapeGlucose Transporter Type 1Tumor hypoxiaCell cyclemedicine.diseaseImmunohistochemistryCell Hypoxiamedicine.anatomical_structureOncologyCancer cellCarcinoma Squamous CellFemaleStromal CellsInternational journal of oncology
researchProduct

Aurora-A Transcriptional Silencing and Vincristine Treatment Show a Synergistic Effect in Human Tumor Cells

2008

Aurora-A is a centrosome-associated serine/threonine kinase that is overexpressed in multiple types of human tumors. Primarily, Aurora-A functions in centrosome maturation and mitotic spindle assembly. Overexpression of Aurora-A induces centrosome amplification and G 2 /M cell cycle progression. Recently, it was observed that overexpression of Aurora-A renders cells resistant to cisplatin (CDDP)-, etoposide-, and paclitaxel-induced apoptosis.Our results indicate that already in initial stages of cancer progression Aurora-A overexpression could have a major role in inducing supernumerary centrosomes and aneuploidy, as shown by immunohistochemistry on tissue sections from various stages of hu…

Cancer ResearchPathologymedicine.medical_specialtyTranscription GeneticApoptosismacromolecular substancesProtein Serine-Threonine KinasesBiologyTransfectionPLK1Aurora KinasesRNA interferenceCell Line TumormedicineHumansGene silencingGene SilencingRNA Small InterferingMitotic catastropheCentrosomeCisplatinCarcinomaCell CycleDrug SynergismAuroraA/stk15centrosome amplificationAneuploidy CINGeneral MedicineCell cycleAneuploidyAntineoplastic Agents PhytogenicGene Expression Regulation NeoplasticSettore BIO/18 - Geneticaenzymes and coenzymes (carbohydrates)OncologyVincristineCentrosomeColonic Neoplasmsembryonic structuresCancer cellCancer researchbiological phenomena cell phenomena and immunityHeLa Cellsmedicine.drugOncology Research Featuring Preclinical and Clinical Cancer Therapeutics
researchProduct

Cannabinoid-associated cell death mechanisms in tumor models

2012

In recent years, cannabinoids (the active compo- nents of Cannabis sativa) and their derivatives have received considerable interest due to findings that they can affect the viability and invasiveness of a variety of different cancer cells. Moreover, in addition to their inhibitory effects on tumor growth and migration, angiogenesis and metastasis, the ability of these compounds to induce different pathways of cell death has been highlighted. Here, we review the most recent results generating interest in the field of death mechanisms induced by cannabinoids in cancer cells. In particular, we analyze the pathways triggered by cannabinoids to induce apoptosis or autophagy and investigate the …

Cancer ResearchProgrammed cell deathAngiogenesismedicine.medical_treatmentAutophagyCancerBiologyCell cyclemedicine.diseaseMetastasisCell biologyOncologyCancer cellmedicineCancer researchCannabinoidInternational Journal of Oncology
researchProduct

Hsp72 controls bortezomib-induced HepG2 cell death via interaction with pro-apoptotic factors.

2007

The proteasome inhibitor bortezomib is an efficacious inducer of apoptosis in the hepatoma HepG2 cell line. This study shows that bortezomib increased in these cells the level of the survival factor Hsp72 in a time- and dose-dependent manner. In a first phase of treatment, Hsp72 rapidly increased so that at 24 h of incubation with 50 nM bortezomib its level was approximately five-fold higher than the control. In this phase Hsp72 seemed to play a role in preventing HepG2 cell death, since it interacted with and sequestered the pro-apoptotic factors p53, AIF, Bax and Apaf-1. During a second day of treatment, although the nuclear levels of Hsp72, p53 and AIF increased, the interaction of Hsp72…

Cancer ResearchProgrammed cell deathCarcinoma HepatocellularTime FactorsCellBlotting WesternApoptosisHSP72 Heat-Shock ProteinsAmino Acid Chloromethyl KetonesBortezomibCell Line TumormedicineHumansImmunoprecipitationProtease Inhibitorscardiovascular diseasesCaspasebcl-2-Associated X ProteinOncogenebiologyBortezomibReverse Transcriptase Polymerase Chain ReactionLiver NeoplasmsApoptosis Inducing Factorproteasome inhibitor hepatocarcinoma apoptosisGeneral MedicineCell cycleBoronic Acidsmedicine.anatomical_structureApoptotic Protease-Activating Factor 1OncologyApoptosisPyrazinesProteasome inhibitorCancer researchbiology.proteinTumor Suppressor Protein p53Apoptosis Regulatory Proteinsmedicine.drugProtein Binding
researchProduct

Histone deacetylase inhibition by valproic acid down-regulates c-FLIP/CASH and sensitizes hepatoma cells towards CD95-and TRAIL receptor-mediated apo…

2005

Hepatocellular carcinoma (HCC) is highly resistant to chemotherapy, leading to a poor prognosis of advanced disease. Inhibitors of histone deacetylase (HDACi) induce re-differentiation in tumor cells and thereby re-establish sensitivity towards apoptotic stimuli. HDACi are entering the clinical stage of tumor treatment, and several substances are currently being tested in clinical trials to prove their efficacy in the treatment of leukemias and solid tumors. In this study, we investigated the impact of the HDACi valproic acid (VA) on TRAIL- and CD95-mediated apoptosis in hepatoma cells, as well as its sensitizing effect on a chemotherapeutic agent. Treatment of HepG2 cells with VA increased…

Cancer ResearchProgrammed cell deathCarcinoma Hepatocellularmedicine.medical_treatmentCellCASP8 and FADD-Like Apoptosis Regulating ProteinDown-RegulationCaspase 3ApoptosisBiologyReceptors Tumor Necrosis FactorTNF-Related Apoptosis-Inducing LigandAntineoplastic Combined Chemotherapy ProtocolsmedicineHumansfas ReceptorEpirubicinChemotherapyMembrane GlycoproteinsCaspase 3Tumor Necrosis Factor-alphaValproic AcidLiver NeoplasmsIntracellular Signaling Peptides and ProteinsGeneral MedicineCell cycleFas receptorHistone Deacetylase Inhibitorsmedicine.anatomical_structureOncologyApoptosisDrug Resistance NeoplasmCaspasesCancer researchHistone deacetylaseApoptosis Regulatory Proteins
researchProduct

Sodium phenylbutyrate induces apoptosis in human retinoblastoma Y79 cells: The effect of combined treatment with the topoisomerase I-inhibitor topote…

2001

Our results demonstrate that sodium phenylbutyrate, a compound with a low degree of toxicity, exerted a cytotoxic effect on human retinoblastoma Y79 cells in a time- and dose-dependent manner. Treatment of Y79 cells for 72 h with phenylbutyrate reduced cell viability by 63% at 2 mM and 90% at 4 mM. Cell death caused by phenylbutyrate exhibited the typical features of apoptosis, as shown by light and fluorescent microscopy. Western blot analysis demonstrated that exposure of Y79 cells to phenylbutyrate decreased the level of the antiapoptotic factor Bcl-2 and induced the activation of caspase-3, a key enzyme in the execution phase of apoptosis. Moreover, treatment with phenylbutyrate markedl…

Cancer ResearchProgrammed cell deathCell SurvivalBlotting WesternApoptosisPhenylbutyrateHistonesSettore BIO/10 - BiochimicamedicineTumor Cells CulturedHumansretinoblastoma apoptosis sodium phenylbutirateViability assayEnzyme InhibitorsbiologyCaspase 3TopoisomeraseRetinoblastomaSodium phenylbutyrateAcetylationDrug SynergismCell cyclePhenylbutyrateseye diseasesEnzyme ActivationOncologyProto-Oncogene Proteins c-bcl-2ApoptosisCaspasesbiology.proteinCancer researchTopotecanDrug Therapy CombinationTopoisomerase I InhibitorsTumor Suppressor Protein p53Topotecanmedicine.drug
researchProduct

The effect of 3-aminobenzamide, inhibitor of poly(ADP-ribose) polymerase, on human osteosarcoma cells

2003

This study demonstrates that in human osteosarcoma cells treatment with 3-aminobenzamide (3-AB), a potent inhibitor of poly(ADP-ribose) polymerase (PARP), induces morphological and biochemical features of differentiation, the duration of which depends on whether or not the normal RB gene is expressed. In Saos-2 cells expressing a non-functional Rb protein, 3-AB treatment induced the formation of transient, short dendritic-like protrusions. In RB-transfected-Saos-2 cells (a clone previously generated in our laboratory that shows stable expression of wild-type Rb protein), 3-AB induced marked and prolonged changes with the formation of long dendritic-like protrusions and the appearance of ste…

Cancer ResearchProgrammed cell deathCell typeTime FactorsTranscription GeneticCell SurvivalPoly ADP ribose polymeraseCellular differentiationBlotting WesternApoptosisDNA FragmentationPoly(ADP-ribose) Polymerase InhibitorsBiologyTransfectionPolymerase Chain ReactionRetinoblastoma Proteinchemistry.chemical_compoundCell Line TumorProto-Oncogene ProteinsHumansMicroscopy Phase-ContrastRNA MessengerEnzyme Inhibitorsbcl-2-Associated X ProteinOsteosarcomaLamin Type BCaspase 3Reverse Transcriptase Polymerase Chain ReactionCell DifferentiationDendritesCell cycleAlkaline PhosphataseFlow CytometryMolecular biologyChromatinHyaluronan ReceptorsProto-Oncogene Proteins c-bcl-2OncologychemistryApoptosis3-AminobenzamideCaspasesBenzamides3-aminobenzamide osteosarcoma cells PARP activityAlkaline phosphataseInternational Journal of Oncology
researchProduct

Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells.

2011

Abstract Artesunate, the active agent from Artemisia annua L. used in the traditional Chinese medicine, is being applied as a first-line drug for malaria treatment, and trials are ongoing that include this drug in cancer therapy. Despite increasing interest in its therapeutic application, the mode of cell killing provoked by artesunate in human cells is unknown. Here, we show that artesunate is a powerful inducer of oxidative DNA damage, giving rise to formamidopyrimidine DNA glycosylase–sensitive sites and the formation of 8-oxoguanine and 1,N6-ethenoadenine. Oxidative DNA damage was induced in LN-229 human glioblastoma cells dose dependently and was paralleled by cell death executed by ap…

Cancer ResearchProgrammed cell deathDNA RepairRAD51Drug Evaluation PreclinicalArtesunateApoptosisCell Cycle ProteinsAtaxia Telangiectasia Mutated ProteinsBiologyProtein Serine-Threonine KinasesModels Biologicalchemistry.chemical_compoundNeoplasmsTumor Cells CulturedHumansDNA Breaks Double-StrandedTumor Suppressor ProteinsMolecular biologyAntineoplastic Agents PhytogenicArtemisininsUp-RegulationNon-homologous end joiningDNA-Binding ProteinsOxidative StressCell killingOncologychemistryArtesunateApoptosisCancer cellHomologous recombinationDNA DamageMolecular cancer therapeutics
researchProduct

Oligodendroglioma cells shed microvesicles which contain TRAIL as well as molecular chaperones and induce cell death in astrocytes.

2011

Microvesicles (MVs) shed from G26/24 oligodendroglioma cells were previously reported to cause a reproducible, dose-dependent, inhibitory effect on neurite outgrowth, and eventually neuronal apoptosis, when added to primary cultures of rat cortical neurons. These effects were reduced but not abolished by functional monoclonal antibodies against Fas-L. In order to investigate whether MVs contain other factors able to induce cell death, we tested them for TRAIL and found clear evidence of its presence in the vesicles. This finding suggests the possibility that Fas-L and TRAIL cooperate in inducing brain cell death. Aimed at understanding the route through which the vesicles deliver their mess…

Cancer ResearchProgrammed cell deathNeuritemedicine.drug_classOligodendrogliomaCellCell CommunicationBiologyMonoclonal antibodyTNF-Related Apoptosis-Inducing LigandCell-Derived MicroparticlesmedicineAnimalsHSP70 Heat-Shock ProteinsRats WistarCells CulturedCell DeathVesicleHSC70 Heat-Shock ProteinsCell cycleMicrovesiclesRatsCell biologymedicine.anatomical_structureOncologyApoptosisAstrocytesCulture Media Conditionedmicrovesicles oligodendroglioma astrocytes TRAIL Hsp70Molecular Chaperones
researchProduct

Dynamic survivin in head and neck cancer: Molecular mechanism and therapeutic potential

2007

Although disease management of head and neck squamous cell carcinomas (HNSCC) has improved significantly, therapy resistance leading to tumor recurrence still counteracts improvement of long-term survival. Consequently, identification of molecular markers that signal increased risk of treatment failure or, which can be exploited by targeted therapy, is urgently needed. Survivin is strongly expressed in HNSCC, and its proposed dual role as an apoptosis inhibitor and a mitotic effector positioned survivin in the front line of cancer research. Notably, survivin is detected as a cytoplasmic and as a nuclear protein in HNSCC patients, which stimulated numerous studies to investigate and to specu…

Cancer ResearchProgrammed cell deathPathologymedicine.medical_specialtyApoptosis InhibitorSurvivinmedicine.medical_treatmentCellBiologyInhibitor of Apoptosis ProteinsTargeted therapySurvivinBiomarkers TumormedicineAnimalsHumansNuclear proteinneoplasmsHead and neck cancerCell cyclePrognosismedicine.diseaseNeoplasm Proteinsmedicine.anatomical_structureOncologyHead and Neck NeoplasmsCancer researchMicrotubule-Associated ProteinsBiologie
researchProduct