Search results for "Cellular Automaton"
showing 10 items of 77 documents
Using Cellular Automata for feature construction - preliminary study
2007
When first faced with a learning task, it is often not clear what a good representation of the training data should look like. We are often forced to create some set of features that appear plausible, without any strong confidence that they will yield superior learning. Beside, we often do not have any prior knowledge of what learning method is the best to apply, and thus often try multiple methods in an attempt to find the one that performs best. This paper describes a new method and its preliminary study for constructing features based on cellular automata (CA). Our approach uses self-organisation ability of cellular automata by constructing features being most efficient for making predic…
Sensitivity to Initial Conditions in an Extended Activator--Inhibitor Model for the Formation of Patterns
2018
Despite simplicity, the synchronous cellular automaton [D.A. Young, Math. Biosci. 72, 51 (1984)] enables reconstructing basic features of patterns of skin. Our extended model allows studying the formatting of patterns and their temporal evolution also on the favourable and hostile environments. As a result, the impact of different types of an environment is accounted for the dynamics of patterns formation. The process is based on two diffusible morphogens, the short-range activator and the long-range inhibitor, produced by differentiated cells (DCs) represented as black pixels. For a neutral environment, the extended model reduces to the original one. However, even the reduced model is stat…
Nonlinear energy dissipation in a cellular automaton magnetotail field model
1999
A magnetic field model of the magnetotail current sheet based on cellular automaton (CA) is presented. The present isotropic model is a continuously driven, two-dimensional running CA. The model has a physical interpretation in terms of magnetohydrodynamic (MHD) equations, and features self-organized critical (SOC) behavior with power-law scalings both in durations and sizes of instabilities (avalanches). The model has nonlinear energy dissipation, and shows avalanches with and without an external trigger. Thus the model reproduces some of the statistical features recently observed in the magnetotail.
Toward multifunctional molecular cells for quantum cellular automata: exploitation of interconnected charge and spin degrees of freedom
2021
We discuss the possibility of using mixed-valence (MV) dimers comprising paramagnetic metal ions as molecular cells for quantum cellular automata (QCA). Thus, we propose to combine the underlying idea behind the functionality of QCA of using the charge distributions to encode binary information with the additional functional options provided by the spin degrees of freedom. The multifunctional ('smart') cell is supposed to consist of multielectron MV d(n)-d(n+1)-type (1 ≤ n ≤ 8) dimers of transition metal ions as building blocks for composing bi-dimeric square planar cells for QCA. The theoretical model of such a cell involves the double exchange (DE), Heisenberg-Dirac-Van Vleck (HDVV) excha…
Cellular automaton for chimera states
2016
A minimalistic model for chimera states is presented. The model is a cellular automaton (CA) which depends on only one adjustable parameter, the range of the nonlocal coupling, and is built from elementary cellular automata and the majority (voting) rule. This suggests the universality of chimera-like behavior from a new point of view: Already simple CA rules based on the majority rule exhibit this behavior. After a short transient, we find chimera states for arbitrary initial conditions, the system spontaneously splitting into stable domains separated by static boundaries, ones synchronously oscillating and the others incoherent. When the coupling range is local, nontrivial coherent struct…
Probabilistic description of traffic flow
2005
Abstract A stochastic description of traffic flow, called probabilistic traffic flow theory, is developed. The general master equation is applied to relatively simple models to describe the formation and dissolution of traffic congestions. Our approach is mainly based on spatially homogeneous systems like periodically closed circular rings without on- and off-ramps. We consider a stochastic one-step process of growth or shrinkage of a car cluster (jam). As generalization we discuss the coexistence of several car clusters of different sizes. The basic problem is to find a physically motivated ansatz for the transition rates of the attachment and detachment of individual cars to a car cluster…
Asymptotic properties of the Dirac quantum cellular automaton
2016
We show that the Dirac quantum cellular automaton [Ann. Phys. 354 (2015) 244] shares many properties in common with the discrete-time quantum walk. These similarities can be exploited to study the automaton as a unitary process that takes place at regular time steps on a one-dimensional lattice, in the spirit of general quantum cellular automata. In this way, it becomes an alternative to the quantum walk, with a dispersion relation that can be controlled by a parameter, which plays a similar role to the coin angle in the quantum walk. The Dirac Hamiltonian is recovered under a suitable limit. We provide two independent analytical approximations to the long term probability distribution. It …
Mixed-Valence Magnetic Molecular Cell for Quantum Cellular Automata: Prospects of Designing Multifunctional Devices through Exploration of Double Exc…
2020
In this article, we propose to use multielectron square-planar mixed-valence (MV) molecules as molecular cells for quantum cellular automata (QCA) devices. As distinguished from previous proposals ...
Insight Into The Spin-Vibronic Problem of a Mixed Valence Magnetic Molecular Cell for Quantum Cellular Automata.
2021
The effects of the vibronic coupling in quantum cellular automata (QCA) based on the square planar mixed valence (MV) molecular cells comprising four paramagnetic centers (spin cores) and two excess mobile electrons are analyzed in the important particular case when the Coulomb energy gap between the ground antipodal diagonal-type two-electron configurations and the excited side-type configurations considerably exceeds both the one-electron transfer parameter (strong U-limit) and the vibronic stabilization energy. Under such conditions the developed model involves the second-order double exchange, the Heisenberg-Dirac-Van Vleck (HDVV) exchange and the vibronic coupling of the excess electro…
Exploration of the double exchange in quantum cellular automata: proposal for a new class of cells
2020
In this communication we propose to considerably extend the class of systems suitable as cells for quantum cellular automata by including magnetic quantum dots and molecular mixed valence dimers exhibiting double exchange. As distinguished from the previous works we propose to use not only charges as the information carriers but also spin degrees of freedom. In this context we focus on the two key points: (1) properties of the magnetic cell as reservoir for charges carrying binary information, and (2) identification of conditions under which spin degrees of freedom can be employed.