Search results for "Cellular Automaton"
showing 10 items of 77 documents
Diagrammatic approach to cellular automata and the emergence of form with inner structure
2018
We present a diagrammatic method to build up sophisticated cellular automata (CAs) as models of complex physical systems. The diagrams complement the mathematical approach to CA modeling, whose details are also presented here, and allow CAs in rule space to be classified according to their hierarchy of layers. Since the method is valid for any discrete operator and only depends on the alphabet size, the resulting conclusions, of general validity, apply to CAs in any dimension or order in time, arbitrary neighborhood ranges and topology. We provide several examples of the method, illustrating how it can be applied to the mathematical modeling of the emergence of order out of disorder. Specif…
Quantum versus Probabilistic One-Way Finite Automata with Counter
2001
The paper adds the one-counter one-way finite automaton [6] to the list of classical computing devices having quantum counterparts more powerful in some cases. Specifically, two languages are considered, the first is not recognizable by deterministic one-counter one-way finite automata, the second is not recognizable with bounded error by probabilistic one-counter one-way finite automata, but each recognizable with bounded error by a quantum one-counter one-way finite automaton. This result contrasts the case of one-way finite automata without counter, where it is known [5] that the quantum device is actually less powerful than its classical counterpart.
Minimal forbidden words and factor automata
1998
International audience; Let L(M) be the (factorial) language avoiding a given antifactorial language M. We design an automaton accepting L(M) and built from the language M. The construction is eff ective if M is finite. If M is the set of minimal forbidden words of a single word v, the automaton turns out to be the factor automaton of v (the minimal automaton accepting the set of factors of v). We also give an algorithm that builds the trie of M from the factor automaton of a single word. It yields a non-trivial upper bound on the number of minimal forbidden words of a word.
TWO-LANE TRAFFIC WITH PLACES OF OBSTRUCTION TO TRAFFIC
2004
As the Nagel–Schreckenberg model (NaSch model) became known as a realistic approach to describe traffic flow on single-lane streets, this model was extended to two-lane traffic by several groups. On the base of our two-lane model, we will now investigate the impact of a place of obstruction, e.g., because of road works, on partial fractions, densities and mean velocities.
Mixed-Valence Molecular Unit for Quantum Cellular Automata: Beyond the Born-Oppenheimer Paradigm through the Symmetry-Assisted Vibronic Approach.
2016
In this article, we focus on the electron-vibrational problem of the tetrameric mixed-valence (MV) complexes proposed for implementation as four-dot molecular quantum cellular automata (mQCA).1 Although the adiabatic approximation explored in ref 2 is an appropriate tool for the qualitative analysis of the basic characteristics of mQCA, like vibronic trapping of the electrons encoding binary information and cell-cell response, it loses its accuracy providing moderate vibronic coupling and fails in the description of the discrete pattern of the vibronic levels. Therefore, a precise solution of the quantum-mechanical vibronic problem is of primary importance for the evaluation of the shapes o…
Spin Switching in Molecular Quantum Cellular Automata Based on Mixed-Valence Tetrameric Units
2016
In this article we focus on the study of spin effects in a single square-planar mixed-valence cell comprising two electrons and in coupled molecular cells for quantum cellular automata. Using the vibronic model we demonstrate that the polarizabilities of the cell are different in spin-singlet and spin-triplet states of the electronic pair. Based on this inference the concept of spin switching in molecular quantum cellular automata is proposed, and the conditions under which this effect is feasible are derived. In order to reveal these conditions we have performed a series of quantum-mechanical calculations of the vibronic energy levels of the isolated cell and of the cell subjected to the e…
Self-trapping of charge polarized states in four-dot molecular quantum cellular automata: bi-electronic tetrameric mixed-valence species
2014
Abstract Our interest in this article is prompted by the problem of the vibronic self-trapping of charge polarized states in the four-dot molecular quantum cellular automata (mQCA), a paradigm for nanoelectronics, in which binary information is encoded in charge configuration of the mQCA cell. We report the evaluation of the electronic states and the adiabatic potentials of mixed-valence (MV) systems in which two electrons (or holes) are shared among four sites. These systems are exemplified by the two kinds of tetra–ruthenium (2Ru(II)+ 2Ru(III)) clusters (assembled as two coupled Creutz–Taube dimers) for which molecular implementation of mQCA was proposed. The tetra–ruthenium clusters incl…
Visual spike-based convolution processing with a Cellular Automata architecture
2010
this paper presents a first approach for implementations which fuse the Address-Event-Representation (AER) processing with the Cellular Automata using FPGA and AER-tools. This new strategy applies spike-based convolution filters inspired by Cellular Automata for AER vision processing. Spike-based systems are neuro-inspired circuits implementations traditionally used for sensory systems or sensor signal processing. AER is a neuromorphic communication protocol for transferring asynchronous events between VLSI spike-based chips. These neuro-inspired implementations allow developing complex, multilayer, multichip neuromorphic systems and have been used to design sensor chips, such as retinas an…
AER Filtering Using GLIDER: VHDL Cellular Automata Description
2008
Cellular Automata (CA) is a bio-inspired processing model for problem solving, initially proposed by Von Neumann. This approach modularizes the processing by dividing the solution into synchronous cells that change their states at the same time in order to get the solution. The communication between them is crucial to achieve the correct solution. On the other hand, the Address-Event-Representation (AER) is a neuromorphic communication protocol for transferring asynchronous events between VLSI chips. These neuro-inspired implementations have been used to design sensor chips (retina, cochleas), processing chips (convolutions, filters) and learning chips, which makes it possible to develop co…
Quantum Cellular Automata: a Short Overview of Molecular Problem
2018
International audience