Search results for "Cellular neuroscience"

showing 10 items of 51 documents

Overview of General and Discriminating Markers of Differential Microglia Phenotypes.

2020

Inflammatory processes and microglia activation accompany most of the pathophysiological diseases in the central nervous system. It is proven that glial pathology precedes and even drives the development of multiple neurodegenerative conditions. A growing number of studies point out the importance of microglia in brain development as well as in physiological functioning. These resident brain immune cells are divergent from the peripherally infiltrated macrophages, but their precise in situ discrimination is surprisingly difficult. Microglial heterogeneity in the brain is especially visible in their morphology and cell density in particular brain structures but also in the expression of cell…

0301 basic medicineCentral nervous systemInflammationReviewBiologylcsh:RC321-571M1/M2 phenotype03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineImmune systemneurotoxicitymedicineCytotoxic T celllcsh:Neurosciences. Biological psychiatry. NeuropsychiatrypolarizationMicrogliaRegeneration (biology)Neurotoxicityinfiltrating macrophagesmedicine.diseasePhenotype030104 developmental biologymedicine.anatomical_structureinflammationCellular Neuroscienceregenerationmicroglial heterogeneitymedicine.symptomNeuroscience030217 neurology & neurosurgeryFrontiers in cellular neuroscience
researchProduct

Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Dro…

2016

During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to i…

0301 basic medicineCentral Nervous SystemCancer ResearchEmbryologyGene ExpressionNervous SystemNeural Stem CellsAnimal CellsMedicine and Health SciencesDrosophila ProteinsHox geneGenetics (clinical)Regulation of gene expressionGeneticsNeuronsMembrane GlycoproteinsDrosophila MelanogasterGene Expression Regulation DevelopmentalAnimal ModelsProtein-Tyrosine KinasesNeural stem cellCell biologyInsectsPhenotypesembryonic structuresDrosophilaDrosophila melanogasterAnatomyCellular Structures and OrganellesCellular TypesResearch Articleanimal structuresArthropodalcsh:QH426-470ImmunoglobulinsBiologyAntennapediaResearch and Analysis Methods03 medical and health sciencesModel OrganismsNeuroblastNuclear BodiesCyclin EGeneticsAnimalsGene RegulationCell LineageMolecular BiologyEcology Evolution Behavior and SystematicsLoss functionCell NucleusHomeodomain ProteinsNeuroectodermEmbryosOrganismsBiology and Life SciencesCell Biologybiology.organism_classificationInvertebrateslcsh:Genetics030104 developmental biologyCellular NeuroscienceDevelopmental BiologyNeurosciencePLoS Genetics
researchProduct

Neuronal activity triggers uptake of hematopoietic extracellular vesicles in vivo

2019

Communication with the hematopoietic system is a vital component of regulating brain function in health and disease. Traditionally, the major routes considered for this neuroimmune communication are by individual molecules such as cytokines carried by blood, by neural transmission, or, in more severe pathologies, by the entry of peripheral immune cells into the brain. In addition, functional mRNA from peripheral blood can be directly transferred to neurons via extracellular vesicles (EVs), but the parameters that determine their uptake are unknown. Using varied animal models that stimulate neuronal activity by peripheral inflammation, optogenetics, and selective proteasome inhibition of dop…

LipopolysaccharidesMaleGene ExpressionStimulationHippocampusBiochemistryStereotaxic Techniques0302 clinical medicineShort ReportsAnimal CellsMedicine and Health SciencesPremovement neuronal activityBiology (General)Routes of AdministrationNeurons0303 health sciencesBrain MappingKainic AcidBrainAnimal ModelsPeripheralCell biologyHaematopoiesisBioassays and Physiological AnalysisExperimental Organism SystemsHippocampus ; Yellow flourescent protein ; Intravenous injections ; Marker genes ; Gene expression ; Neurons ; Microglial cells ; OptogeneticsFemaleCellular TypesSignal TransductionProteasome Endopeptidase ComplexQH301-705.5Yellow Fluorescent ProteinMice TransgenicGlial CellsMouse ModelsStimulus (physiology)BiologyResearch and Analysis Methods03 medical and health sciencesExtracellular VesiclesImmune systemModel OrganismsIn vivoIntravenous InjectionsGeneticsAnimalsddc:610Molecular Biology TechniquesMolecular BiologyMicroglial Cells030304 developmental biologyInflammationPharmacologyMessenger RNABlood CellsUbiquitinDopaminergic NeuronsBiology and Life SciencesProteinsMarker GenesCell BiologyNeurophysiological AnalysisOptogeneticsLuminescent ProteinsCellular NeuroscienceAnimal Studies030217 neurology & neurosurgeryNeuroscience
researchProduct

Coincident glutamatergic depolarizations enhance GABAA receptor-dependent Cl- influx in mature and suppress Cl- efflux in immature neurons.

2021

The impact of GABAergic transmission on neuronal excitability depends on the Cl--gradient across membranes. However, the Cl--fluxes through GABAA receptors alter the intracellular Cl- concentration ([Cl-]i) and in turn attenuate GABAergic responses, a process termed ionic plasticity. Recently it has been shown that coincident glutamatergic inputs significantly affect ionic plasticity. Yet how the [Cl-]i changes depend on the properties of glutamatergic inputs and their spatiotemporal relation to GABAergic stimuli is unknown. To investigate this issue, we used compartmental biophysical models of Cl- dynamics simulating either a simple ball-and-stick topology or a reconstructed CA3 neuron. Th…

Databases FactualPhysiologyNervous SystemBiochemistrySynaptic TransmissionAnimal CellsMedicine and Health SciencesCl effluxBiology (General)Receptorgamma-Aminobutyric AcidNeuronsNeuronal PlasticityEcologyNeuronal MorphologyGABAA receptorChemistryPyramidal CellsNeurochemistryNeurotransmittersCA3 Region HippocampalElectrophysiologymedicine.anatomical_structureComputational Theory and MathematicsModeling and SimulationGABAergicAnatomyCellular TypesReceptor PhysiologyIntracellularResearch ArticleCell PhysiologyQH301-705.5Models NeurologicalNeurophysiologyMembrane PotentialCellular and Molecular NeuroscienceGlutamatergicChloridesGeneticsmedicineAnimalsMolecular BiologyEcology Evolution Behavior and SystematicsBiology and Life SciencesComputational BiologyCell BiologyNeuronal DendritesReceptors GABA-ACellular NeuroscienceSynapsesCa3 pyramidal neuronDepolarizationNeuronNeuroscienceNeurosciencePLoS Computational Biology
researchProduct

The Evonik-Mainz Eye Care-Study (EMECS): Development of an Expert System for Glaucoma Risk Detection in a Working Population

2015

Purpose To develop an expert system for glaucoma screening in a working population based on a human expert procedure using images of optic nerve head (ONH), visual field (frequency doubling technology, FDT) and intraocular pressure (IOP). Methods 4167 of 13037 (32%) employees between 40 and 65 years of Evonik Industries were screened. An experienced glaucoma expert (JW) assessed papilla parameters and evaluated all individual screening results. His classification into “no glaucoma”, “possible glaucoma” and “probable glaucoma” was defined as “gold standard”. A screening model was developed which was tested versus the gold-standard. This model took into account the assessment of the ONH. Valu…

MaleIntraocular pressureEye Diseasesgenetic structuresOptic disklcsh:MedicineGlaucomacomputer.software_genreNerve Fibers0302 clinical medicineCost of IllnessRisk FactorsAnimal CellsOdds RatioPrevalenceMedicine and Health SciencesMedicine030212 general & internal medicinelcsh:ScienceNeuronsMultidisciplinaryPharmaceuticsApplied MathematicsSimulation and ModelingMiddle AgedVisual fieldPhysical SciencesFemaleAnatomyCellular TypesAlgorithmsResearch ArticleAdultmedicine.medical_specialtyOptic DiskResearch and Analysis MethodsSensitivity and SpecificityDiagnosis DifferentialTonometry Ocular03 medical and health sciencesDrug TherapyOcular SystemOphthalmologyHumansWorking populationIntraocular PressureAgedbusiness.industrylcsh:RBiology and Life SciencesGlaucomaOptic NerveCell BiologyOdds ratioGold standard (test)medicine.diseaseeye diseasesExpert systemOphthalmologyCellular Neuroscience030221 ophthalmology & optometryVisual Field TestsEyesOptometrylcsh:Qsense organsVisual FieldsbusinessHeadcomputerMathematicsNeurosciencePLOS ONE
researchProduct

Reservoir computing model of prefrontal cortex creates novel combinations of previous navigation sequences from hippocampal place-cell replay with sp…

2019

As rats learn to search for multiple sources of food or water in a complex environment, they generate increasingly efficient trajectories between reward sites. Such spatial navigation capacity involves the replay of hippocampal place-cells during awake states, generating small sequences of spatially related place-cell activity that we call “snippets”. These snippets occur primarily during sharp-wave-ripples (SWRs). Here we focus on the role of such replay events, as the animal is learning a traveling salesperson task (TSP) across multiple trials. We hypothesize that snippet replay generates synthetic data that can substantially expand and restructure the experience available and make learni…

Social SciencesNeocortexHippocampusLearning and MemoryAnimal CellsMedicine and Health SciencesPsychologyBiology (General)Problem SolvingProjectionsMammalsNeuronsBehavior AnimalApplied MathematicsSimulation and ModelingBrainEukaryotaAnimal ModelsReactivationExperimental Organism SystemsVertebratesPhysical Sciences[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]AnatomyCellular TypesAlgorithmsStateResearch ArticleMidline ThalamusReverse ReplayQH301-705.5Neural ComputationPrefrontal CortexResearch and Analysis MethodsRodentsModel OrganismsRewardAnimalsLearningComputer Simulation[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]ExperienceOrganismsCognitive PsychologySystemsBiology and Life SciencesCell BiologyRatsNeostriatumCellular NeuroscienceAmniotesAnimal StudiesCognitive ScienceMathematicsNeuroscience
researchProduct

Changes in the spatial distribution of the Purkinje network after acute myocardial infarction in the pig

2018

Purkinje cells (PCs) are more resistant to ischemia than myocardial cells, and are suspected to participate in ventricular arrhythmias following myocardial infarction (MI). Histological studies afford little evidence on the behavior and adaptation of PCs in the different stages of MI, especially in the chronic stage, and no quantitative data have been reported to date beyond subjective qualitative depictions. The present study uses a porcine model to present the first quantitative analysis of the distal cardiac conduction system and the first reported change in the spatial distribution of PCs in three representative stages of MI: an acute model both with and without reperfusion; a subacute …

0301 basic medicineCritical Care and Emergency MedicineSwinemedicine.medical_treatmentMyocardial InfarctionInfarction030204 cardiovascular system & hematologyPathology and Laboratory MedicineVascular MedicinePurkinje Cells0302 clinical medicineAnimal CellsIschemiaMedicine and Health SciencesTissue DistributionMyocardial infarctionNeuronsCardiomyocytesMultidisciplinaryQRHeartInfarctionDisease ProgressionCardiologyMedicineCellular TypesAnatomyElectrical conduction system of the heartResearch Articlemedicine.medical_specialtyHistologyScienceCardiologyMuscle TissueIschemiaMyocardial Reperfusion InjuryCatheter ablation03 medical and health sciencesSigns and SymptomsHeart Conduction SystemDiagnostic MedicineInternal medicinemedicineAnimalscardiovascular diseasesEndocardiumMuscle Cellsbusiness.industryBiology and Life SciencesCell Biologymedicine.diseaseElectrophysiologyBiological Tissue030104 developmental biologyVacuolizationCellular NeuroscienceReperfusionCardiovascular AnatomyNerve NetbusinessEndocardiumNeuroscience
researchProduct

Modelling the spatial and temporal constrains of the GABAergic influence on neuronal excitability

2021

GABA (γ-amino butyric acid) is an inhibitory neurotransmitter in the adult brain that can mediate depolarizing responses during development or after neuropathological insults. Under which conditions GABAergic membrane depolarizations are sufficient to impose excitatory effects is hard to predict, as shunting inhibition and GABAergic effects on spatiotemporal filtering of excitatory inputs must be considered. To evaluate at which reversal potential a net excitatory effect was imposed by GABA (EGABAThr), we performed a detailed in-silico study using simple neuronal topologies and distinct spatiotemporal relations between GABAergic and glutamatergic inputs. These simulations revealed for GABAe…

Patch-Clamp TechniquesAction potentialPhysiologyAction PotentialsSynaptic TransmissionNervous SystemBiochemistryMiceNerve FibersAnimal CellsMedicine and Health SciencesGABAergic NeuronsBiology (General)gamma-Aminobutyric AcidNeuronsMembrane potentialEcologyChemistryPyramidal CellsDepolarizationNeurochemistryNeurotransmittersCA3 Region HippocampalElectrophysiologyReceptors GlutamateComputational Theory and MathematicsModeling and SimulationExcitatory postsynaptic potentialGABAergicAnatomyCellular TypesShunting inhibitionResearch Articlemedicine.drugQH301-705.5Models NeurologicalNeurophysiologyAMPA receptorMembrane Potentialgamma-Aminobutyric acidCellular and Molecular NeuroscienceGlutamatergicSpatio-Temporal AnalysisGeneticsmedicineAnimalsComputer SimulationReceptors AMPAReversal potentialMolecular BiologyEcology Evolution Behavior and SystematicsComputational BiologyBiology and Life SciencesNeural InhibitionDendritesCell BiologyNeuronal DendritesAxonsMice Inbred C57BLAnimals Newbornnervous systemCellular NeuroscienceSynapsesDepolarizationNeuroscienceNeurosciencePLOS Computational Biology
researchProduct

Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations.

2016

Methyl-CpG binding protein 2 (MeCP2) is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X), a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel find…

0301 basic medicineMethyl-CpG-Binding Protein 2lcsh:MedicineApoptosisBiochemistryPhosphoserine0302 clinical medicineAnimal CellsDrosophila ProteinsPost-Translational ModificationPhosphorylationlcsh:ScienceNeuronsMotor NeuronsGeneticsMultidisciplinaryCell DeathbiologyDrosophila MelanogasterAnimal ModelsInsectsFOXG1Cell ProcessesCaspasesPhosphorylationDrosophilaBiological CulturesCellular TypesDrosophila melanogasterResearch ArticleGene isoformcongenital hereditary and neonatal diseases and abnormalitiesArthropodaProtein domainMouse ModelsMotor ActivityResearch and Analysis MethodsTransfectionModels BiologicalMECP203 medical and health sciencesModel OrganismsProtein Domainsmental disordersAnimalsHumansMolecular Biology TechniquesImmunohistochemistry TechniquesMolecular BiologyTranscription factorBinding proteinlcsh:ROrganismsBiology and Life SciencesProteinsCell BiologyCell Culturesbiology.organism_classificationInvertebratesHistochemistry and Cytochemistry TechniquesHEK293 Cells030104 developmental biologyCellular NeuroscienceMutationImmunologic TechniquesMutant Proteinslcsh:Q030217 neurology & neurosurgeryNeuroscienceTranscription FactorsPLoS ONE
researchProduct

Therapeutic effects of hMAPC and hMSC transplantation after stroke in mice.

2012

Stroke represents an attractive target for stem cell therapy. Although different types of cells have been employed in animal models, a direct comparison between cell sources has not been performed. The aim of our study was to assess the effect of human multipotent adult progenitor cells (hMAPCs) and human mesenchymal stem cells (hMSCs) on endogenous neurogenesis, angiogenesis and inflammation following stroke. BALB/Ca-RAG 2(-/-) γC(-/-) mice subjected to FeCl(3) thrombosis mediated stroke were intracranially injected with 2 × 10(5) hMAPCs or hMSCs 2 days after stroke and followed for up to 28 days. We could not detect long-term engraftment of either cell population. However, in comparison w…

MaleAnatomy and PhysiologyMousemedicine.medical_treatmentCell therapyMiceCell MovementMolecular Cell BiologyNeurobiology of Disease and RegenerationMedicineMultidisciplinaryNeuronal MorphologyNeurogenesisQRBrainInfarction Middle Cerebral ArteryAnimal ModelsStem-cell therapyStrokeAdult Stem Cellsmedicine.anatomical_structureNeurologyMedicineResearch ArticleAdult stem cellCell PhysiologyHistologyCell SurvivalCerebrovascular DiseasesScienceTherapeutic effectsNeurophysiologyNeovascularization PhysiologicSubventricular zoneMesenchymal Stem Cell TransplantationNeurological SystemModel OrganismsAnimalsHumansProgenitor cellBiologyTransplantationbusiness.industryMultipotent Stem CellsMesenchymal stem cellMultipotent Stem CellCellular NeuroscienceImmunologyCancer researchMolecular NeurosciencebusinesshMAPC and hMSCNeurosciencePLoS ONE
researchProduct