Search results for "Central Limit Theorem"
showing 9 items of 19 documents
Recursive estimation of the conditional geometric median in Hilbert spaces
2012
International audience; A recursive estimator of the conditional geometric median in Hilbert spaces is studied. It is based on a stochastic gradient algorithm whose aim is to minimize a weighted L1 criterion and is consequently well adapted for robust online estimation. The weights are controlled by a kernel function and an associated bandwidth. Almost sure convergence and L2 rates of convergence are proved under general conditions on the conditional distribution as well as the sequence of descent steps of the algorithm and the sequence of bandwidths. Asymptotic normality is also proved for the averaged version of the algorithm with an optimal rate of convergence. A simulation study confirm…
Central Limit Theorem for Linear Eigenvalue Statistics for a Tensor Product Version of Sample Covariance Matrices
2017
For $$k,m,n\in {\mathbb {N}}$$ , we consider $$n^k\times n^k$$ random matrices of the form $$\begin{aligned} {\mathcal {M}}_{n,m,k}({\mathbf {y}})=\sum _{\alpha =1}^m\tau _\alpha {Y_\alpha }Y_\alpha ^T,\quad {Y}_\alpha ={\mathbf {y}}_\alpha ^{(1)}\otimes \cdots \otimes {\mathbf {y}}_\alpha ^{(k)}, \end{aligned}$$ where $$\tau _{\alpha }$$ , $$\alpha \in [m]$$ , are real numbers and $${\mathbf {y}}_\alpha ^{(j)}$$ , $$\alpha \in [m]$$ , $$j\in [k]$$ , are i.i.d. copies of a normalized isotropic random vector $${\mathbf {y}}\in {\mathbb {R}}^n$$ . For every fixed $$k\ge 1$$ , if the Normalized Counting Measures of $$\{\tau _{\alpha }\}_{\alpha }$$ converge weakly as $$m,n\rightarrow \infty $$…
On (n-l)-wise and joint independence and normality of n Random variables: an example
1981
An example is given of a vector of n random variables such that any (n-1)-dimensional subvector consists of n-1 independent standard normal variables. The whole vector however is neither independent nor normal.
On Non-Gaussian limiting laws for certain statistics of Wigner Matrices
2013
This paper is a continuation of our papers [12-14] in which the limiting laws of fluctuations were found for the linear eigenvalue statistics Tr j(M(n)) and for the normalized matrix elements √n̅jjj(M(n)) of differentiable functions of real symmetric Wigner matrices M(n) as n →∞. Here we consider another spectral characteristic of Wigner matrices, xnA [j] = Tr j(M(n))A(n), where {A(n)}∞n=1 is a certain sequence of non-random matrices. We show first that if M(n) belongs to the Gaussian Orthogonal Ensemble, then xnA [j] satisfies the Central Limit Theorem. Then we consider Wigner matrices with i.i.d. entries possessing the entire characteristic function and find the limiting probability law f…
Synchronization and fluctuations for interacting stochastic systems with individual and collective reinforcement
2020
The Pólya urn is the paradigmatic example of a reinforced stochastic process. It leads to a random (non degenerated) time-limit. The Friedman urn is a natural generalization whose a.s. time-limit is not random anymore. In this work, in the stream of previous recent works, we introduce a new family of (finite) systems of reinforced stochastic processes, interacting through an additional collective reinforcement of mean field type. The two reinforcement rules strengths (one componentwise, one collective) are tuned through (possibly) different rates n −γ. In the case the reinforcement rates are like n −1 , these reinforcements are of Pólya or Friedman type as in urn contexts and may thus lead …
Statistics of transitions for Markov chains with periodic forcing
2013
The influence of a time-periodic forcing on stochastic processes can essentially be emphasized in the large time behaviour of their paths. The statistics of transition in a simple Markov chain model permits to quantify this influence. In particular the first Floquet multiplier of the associated generating function can be explicitly computed and related to the equilibrium probability measure of an associated process in higher dimension. An application to the stochastic resonance is presented.
Statistical consequences of the Devroye inequality for processes. Applications to a class of non-uniformly hyperbolic dynamical systems
2005
In this paper, we apply Devroye inequality to study various statistical estimators and fluctuations of observables for processes. Most of these observables are suggested by dynamical systems. These applications concern the co-variance function, the integrated periodogram, the correlation dimension, the kernel density estimator, the speed of convergence of empirical measure, the shadowing property and the almost-sure central limit theorem. We proved in \cite{CCS} that Devroye inequality holds for a class of non-uniformly hyperbolic dynamical systems introduced in \cite{young}. In the second appendix we prove that, if the decay of correlations holds with a common rate for all pairs of functio…
On the spatial spread of a pattern
1980
A simple process is considered for the spread of a pattern in a spatially distributed population. Expressions are given for the stochastic means, variances and covariances. Central limit theorems are obtained for the number of individuals that have the pattern, and the time needed for the pattern to reach the n-th subpopulation.
Convergence of Measures
2020
One focus of probability theory is distributions that are the result of an interplay of a large number of random impacts. Often a useful approximation can be obtained by taking a limit of such distributions, for example, a limit where the number of impacts goes to infinity. With the Poisson distribution, we have encountered such a limit distribution that occurs as the number of very rare events when the number of possibilities goes to infinity (see Theorem 3.7). In many cases, it is necessary to rescale the original distributions in order to capture the behavior of the essential fluctuations, e.g., in the central limit theorem. While these theorems work with real random variables, we will a…