Search results for "Central Limit Theorem"

showing 9 items of 19 documents

Recursive estimation of the conditional geometric median in Hilbert spaces

2012

International audience; A recursive estimator of the conditional geometric median in Hilbert spaces is studied. It is based on a stochastic gradient algorithm whose aim is to minimize a weighted L1 criterion and is consequently well adapted for robust online estimation. The weights are controlled by a kernel function and an associated bandwidth. Almost sure convergence and L2 rates of convergence are proved under general conditions on the conditional distribution as well as the sequence of descent steps of the algorithm and the sequence of bandwidths. Asymptotic normality is also proved for the averaged version of the algorithm with an optimal rate of convergence. A simulation study confirm…

Statistics and ProbabilityMallows-Wasserstein distanceRobbins-Monroasymptotic normalityCLTcentral limit theoremAsymptotic distributionMathematics - Statistics TheoryStatistics Theory (math.ST)01 natural sciencesMallows–Wasserstein distanceonline data010104 statistics & probability[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]60F05FOS: MathematicsApplied mathematics[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]0101 mathematics62L20MathematicsaveragingSequential estimation010102 general mathematicsEstimatorRobbins–MonroConditional probability distribution[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]Geometric medianstochastic gradient[ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH]robust estimatorRate of convergenceConvergence of random variablesStochastic gradient.kernel regressionsequential estimationKernel regressionStatistics Probability and Uncertainty
researchProduct

Central Limit Theorem for Linear Eigenvalue Statistics for a Tensor Product Version of Sample Covariance Matrices

2017

For $$k,m,n\in {\mathbb {N}}$$ , we consider $$n^k\times n^k$$ random matrices of the form $$\begin{aligned} {\mathcal {M}}_{n,m,k}({\mathbf {y}})=\sum _{\alpha =1}^m\tau _\alpha {Y_\alpha }Y_\alpha ^T,\quad {Y}_\alpha ={\mathbf {y}}_\alpha ^{(1)}\otimes \cdots \otimes {\mathbf {y}}_\alpha ^{(k)}, \end{aligned}$$ where $$\tau _{\alpha }$$ , $$\alpha \in [m]$$ , are real numbers and $${\mathbf {y}}_\alpha ^{(j)}$$ , $$\alpha \in [m]$$ , $$j\in [k]$$ , are i.i.d. copies of a normalized isotropic random vector $${\mathbf {y}}\in {\mathbb {R}}^n$$ . For every fixed $$k\ge 1$$ , if the Normalized Counting Measures of $$\{\tau _{\alpha }\}_{\alpha }$$ converge weakly as $$m,n\rightarrow \infty $$…

Statistics and ProbabilityMathematics(all)Multivariate random variableGeneral Mathematics010102 general mathematicslinear eigenvalue statisticsrandom matrices01 natural sciencesSample mean and sample covariance010104 statistics & probabilityDistribution (mathematics)Tensor productStatisticssample covariance matricescentral Limit Theorem0101 mathematicsStatistics Probability and UncertaintyRandom matrixEigenvalues and eigenvectorsMathematicsReal numberCentral limit theoremJournal of Theoretical Probability
researchProduct

On (n-l)-wise and joint independence and normality of n Random variables: an example

1981

An example is given of a vector of n random variables such that any (n-1)-dimensional subvector consists of n-1 independent standard normal variables. The whole vector however is neither independent nor normal.

Statistics and ProbabilityPairwise independenceCombinatoricsExchangeable random variablesIndependent and identically distributed random variablesStandard normal deviateMultivariate random variableSum of normally distributed random variablesStatisticsMarginal distributionCentral limit theoremMathematicsCommunications in Statistics - Theory and Methods
researchProduct

On Non-Gaussian limiting laws for certain statistics of Wigner Matrices

2013

This paper is a continuation of our papers [12-14] in which the limiting laws of fluctuations were found for the linear eigenvalue statistics Tr j(M(n)) and for the normalized matrix elements √n̅jjj(M(n)) of differentiable functions of real symmetric Wigner matrices M(n) as n →∞. Here we consider another spectral characteristic of Wigner matrices, xnA [j] = Tr j(M(n))A(n), where {A(n)}∞n=1 is a certain sequence of non-random matrices. We show first that if M(n) belongs to the Gaussian Orthogonal Ensemble, then xnA [j] satisfies the Central Limit Theorem. Then we consider Wigner matrices with i.i.d. entries possessing the entire characteristic function and find the limiting probability law f…

Wigner matricescentral limit theoremspectral characteristicsJournal of Mathematical Physics Analysis Geometry
researchProduct

Synchronization and fluctuations for interacting stochastic systems with individual and collective reinforcement

2020

The Pólya urn is the paradigmatic example of a reinforced stochastic process. It leads to a random (non degenerated) time-limit. The Friedman urn is a natural generalization whose a.s. time-limit is not random anymore. In this work, in the stream of previous recent works, we introduce a new family of (finite) systems of reinforced stochastic processes, interacting through an additional collective reinforcement of mean field type. The two reinforcement rules strengths (one componentwise, one collective) are tuned through (possibly) different rates n −γ. In the case the reinforcement rates are like n −1 , these reinforcements are of Pólya or Friedman type as in urn contexts and may thus lead …

[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Interacting random systemssynchronisation[MATH] Mathematics [math]Almost sure convergenceReinforced stochastic processes[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]62P35Secondary 62L2060F05Central limit theoremsFluctuationsFluctuations MSC2010 Classification Primary 60K3560F15[MATH]Mathematics [math]stable convergence
researchProduct

Statistics of transitions for Markov chains with periodic forcing

2013

The influence of a time-periodic forcing on stochastic processes can essentially be emphasized in the large time behaviour of their paths. The statistics of transition in a simple Markov chain model permits to quantify this influence. In particular the first Floquet multiplier of the associated generating function can be explicitly computed and related to the equilibrium probability measure of an associated process in higher dimension. An application to the stochastic resonance is presented.

[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Markov chain mixing timeMarkov kernelMarkov chainProbability (math.PR)Markov chainlarge time asymptoticStochastic matrixcentral limit theoremMarkov process[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]symbols.namesakeMarkov renewal processModeling and SimulationFloquet multipliersStatisticsFOS: MathematicssymbolsMarkov propertyExamples of Markov chainsstochastic resonance60J27 60F05 34C25[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]Mathematics - ProbabilityMathematics
researchProduct

Statistical consequences of the Devroye inequality for processes. Applications to a class of non-uniformly hyperbolic dynamical systems

2005

In this paper, we apply Devroye inequality to study various statistical estimators and fluctuations of observables for processes. Most of these observables are suggested by dynamical systems. These applications concern the co-variance function, the integrated periodogram, the correlation dimension, the kernel density estimator, the speed of convergence of empirical measure, the shadowing property and the almost-sure central limit theorem. We proved in \cite{CCS} that Devroye inequality holds for a class of non-uniformly hyperbolic dynamical systems introduced in \cite{young}. In the second appendix we prove that, if the decay of correlations holds with a common rate for all pairs of functio…

[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Pure mathematicsDynamical systems theoryFunction space[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]General Physics and AstronomyDynamical Systems (math.DS)01 natural sciences010104 statistics & probabilityFOS: MathematicsMathematics - Dynamical Systems0101 mathematicsMathematical PhysicsCentral limit theoremMathematicsApplied MathematicsProbability (math.PR)010102 general mathematicsEstimatorStatistical and Nonlinear PhysicsFunction (mathematics)Absolute continuity[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Besov spaceInvariant measure[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]Mathematics - ProbabilityNonlinearity
researchProduct

On the spatial spread of a pattern

1980

A simple process is considered for the spread of a pattern in a spatially distributed population. Expressions are given for the stochastic means, variances and covariances. Central limit theorems are obtained for the number of individuals that have the pattern, and the time needed for the pattern to reach the n-th subpopulation.

education.field_of_studyBernoulli distributionSimple (abstract algebra)PopulationProcess (computing)Stirling numberApplied mathematicseducationCentral limit theoremMathematics
researchProduct

Convergence of Measures

2020

One focus of probability theory is distributions that are the result of an interplay of a large number of random impacts. Often a useful approximation can be obtained by taking a limit of such distributions, for example, a limit where the number of impacts goes to infinity. With the Poisson distribution, we have encountered such a limit distribution that occurs as the number of very rare events when the number of possibilities goes to infinity (see Theorem 3.7). In many cases, it is necessary to rescale the original distributions in order to capture the behavior of the essential fluctuations, e.g., in the central limit theorem. While these theorems work with real random variables, we will a…

symbols.namesakeProbability theoryWeak convergencesymbolsLimit (mathematics)Statistical physicsPoisson distributionConvergence of measuresRandom variableBrownian motionMathematicsCentral limit theorem
researchProduct