Search results for "Cerebral"
showing 10 items of 1357 documents
Iron-loaded transferrin (Tf) is detrimental whereas iron-free Tf confers protection against brain ischemia by modifying blood Tf saturation and subse…
2018
Despite transferrin being the main circulating carrier of iron in body fluids, and iron overload conditions being known to worsen stroke outcome through reactive oxygen species (ROS)-induced damage, the contribution of blood transferrin saturation (TSAT) to stroke brain damage is unknown. The objective of this study was to obtain evidence on whether TSAT determines the impact of experimental ischemic stroke on brain damage and whether iron-free transferrin (apotransferrin, ATf)-induced reduction of TSAT is neuroprotective. We found that experimental ischemic stroke promoted an early extravasation of circulating iron-loaded transferrin (holotransferrin, HTf) to the ischemic brain parenchyma.…
Anatomy and physiology of cisternostomy
2016
Cisternostomy is defined as opening the basal cisterns to atmospheric pressure. This technique helps to reduce the intracranial pressure in severe head trauma as well as other conditions when the so-called sudden “brain swelling” troubles the surgeon. We elaborated the surgical anatomy of this procedure as well as the proposed physiology of how cisternostomy works. This novel technique may change the current trends in neurosurgery.
Rescue of Hypovitaminosis A Induces Non-Amyloidogenic Amyloid Precursor Protein (APP) Processing.
2015
Retinoic acid, the bioactive metabolite of beta-carotene or vitamin A, plays a pleiotropic, multifunctional role in vertebrate development. Studies in rodents revealed that a diet deficient in vitamin A results in a complex neonatal syndrome (the VAD syndrome), manifested in many organs. In humans, the function of retinoic acid (RA) extends into adulthood, where it has important roles in fertility, vision, and suppression of neoplastic growth. In recent years, it has also been suggested that retinoic acid might potentially act as a therapeutically relevant drug in attenuating or even preventing neurodegenerative diseases such as Alzheimer's disease (AD). Here, we report that VAD leads to an…
MECP2 impairs neuronal structure by regulating KIBRA
2016
Using a Drosophila model of MECP2 gain-of-function, we identified memory associated KIBRA as a target of MECP2 in regulating dendritic growth. We found that expression of human MECP2 increased kibra expression in Drosophila, and targeted RNAi knockdown of kibra in identified neurons fully rescued dendritic defects as induced by MECP2 gain-of-function. Validation in mouse confirmed that Kibra is similarly regulated by Mecp2 in a mammalian system. We found that Mecp2 gain-of-function in cultured mouse cortical neurons caused dendritic impairments and increased Kibra levels. Accordingly, Mecp2 loss-of-function in vivo led to decreased Kibra levels in hippocampus, cortex, and cerebellum. Togeth…
2018
During early development the structure and function of the cerebral cortex is critically organized by subplate neurons (SPNs), a mostly transient population of glutamatergic and GABAergic neurons located below the cortical plate. At the molecular and morphological level SPNs represent a rather diverse population of cells expressing a variety of genetic markers and revealing different axonal-dendritic morphologies. Electrophysiologically SPNs are characterized by their rather mature intrinsic membrane properties and firing patterns. They are connected via electrical and chemical synapses to local and remote neurons, e.g., thalamic relay neurons forming the first thalamocortical input to the …
Dysregulation of C-X-C motif ligand 10 during aging and association with cognitive performance
2017
International audience; Chronic low-grade inflammation during aging (inflammaging) is associated with cognitive decline and neurodegeneration; however, the mechanisms underlying inflammaging are unclear. We studied a population (n = 361) of healthy young and old adults from the MyoAge cohort. Peripheral levels of C-X-C motif chemokine ligand 10 (CXCL10) was found to be higher in older adults, compared with young, and negatively associated with working memory performance. This coincided with an age-related reduction in blood DNA methylation at specific CpGs within the CXCL10 gene promoter. In vitro analysis supported the role of DNA methylation in regulating CXCL10 transcription. A polymorph…
Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves.
2017
When a person is in a deep non-dreaming sleep, neurons in their brain alternate slowly between periods of silence and periods of activity. This gives rise to low-frequency brain rhythms called slow waves, which are thought to help stabilize memories. Slow wave activity can be detected on multiple scales, from the pattern of electrical impulses sent by an individual neuron to the collective activity of the brain’s entire outer layer, the cortex. But does slow wave activity in an individual group of neurons in the cortex affect the activity of the rest of the brain? To find out, Schwalm, Schmid, Wachsmuth et al. took advantage of the fact that slow waves also occur under general anesthesia, a…
Phylogenetic variation in cortical layer II immature neuron reservoir of mammals
2020
The adult mammalian brain is mainly composed of mature neurons. A limited amount of stem cell-driven neurogenesis persists in postnatal life and is reduced in large-brained species. Another source of immature neurons in adult brains is cortical layer II. These cortical immature neurons (cINs) retain developmentally undifferentiated states in adulthood, though they are generated before birth. Here, the occurrence, distribution and cellular features of cINs were systematically studied in 12 diverse mammalian species spanning from small-lissencephalic to large-gyrencephalic brains. In spite of well-preserved morphological and molecular features, the distribution of cINs was highly heterogeneou…
Mitochondrial targeting as a novel therapy for stroke
2018
Stroke is a main cause of mortality and morbidity worldwide. Despite the increasing development of innovative treatments for stroke, most are unsuccessful in clinical trials. In recent years, an encouraging strategy for stroke therapy has been identified in stem cells transplantation. In particular, grafting cells and their secretion products are leading with functional recovery in stroke patients by promoting the growth and function of the neurovascular unit – a communication framework between neurons, their supply microvessels along with glial cells – underlying stroke pathology and recovery. Mitochondrial dysfunction has been recently recognized as a hallmark in ischemia/reperfusion neur…
Update of Immunosenescence in Cerebral Small Vessel Disease
2020
Aging of the central nervous system (CNS) is closely associated with chronic sterile low-grade inflammation in older organisms and related immune response. As an amplifier for neuro-inflammaging, immunosenescence remodels and deteriorates immune systems gradually with the passage of time, and finally contributes to severe outcomes like stroke, dementia and neurodegeneration in elderly adults. Cerebral small vessel disease (CSVD), one of the major causes of vascular dementia, has an intensive connection with the inflammatory response and immunosenescence plays a crucial role in the pathology of this disorder. In this review, we discuss the impact of immunosenescence on the development of CSV…