Search results for "Chaotic dynamics"
showing 10 items of 197 documents
Physical interpretation of laser phase dynamics
1990
The basic features characterizing the dynamical evolution of the phase of a detuned-laser field under an unstable regime are physically interpreted in terms of dispersive and dynamical effects. A general method for obtaining any attractor projection containing the phase information is established, which provides evidence for the heteroclinic character of the attractor in the presence of cavity detuning for any emission regime.
Effect of the Converging Pipe on the Performance of a Lucid Spherical Rotor
2018
Lucid spherical rotor is a cross-flow rotor developed to be installed within a pipeline. The purpose of installing this type of rotor is to collect excess energy available in gravity-fed water pipelines. In order to enhance the efficiency of the rotor which is installed in a channel, this paper aims to study the performance of Lucid spherical rotor with converging pipe. Numerical investigations were carried out to analyze the effect of the converging pipe on the performance of the rotor. Numerical simulations have been carried out using the unsteady Reynolds-averaged Navier–Stokes equations in conjunction with the realizable $$k-{\varepsilon }$$ turbulence model. The validation of the numer…
Determination of the top quark mass circa 2013: methods, subtleties, perspectives
2013
We present an up-to-date overview of the problem of top quark mass determination. We assess the need for precision in the top mass extraction in the LHC era together with the main theoretical and experimental issues arising in precision top mass determination. We collect and document existing results on top mass determination at hadron colliders and map the prospects for future precision top mass determination at e+e- colliders. We present a collection of estimates for the ultimate precision of various methods for top quark mass extraction at the LHC.
Structural similarities and differences among attractors and their intensity maps in the laser-Lorenz model
1995
Abstract Numerical studies of the laser-Lorenz model using parameters reasonably accessible for recent experiments with a single mode homogeneously broadened laser demonstrate that the form of the return map of successive peak values of the intensity changes from a sharply cusped map in resonance to a map with a smoothly rounded maximum as the laser is detuned into the period doubling regime. This transformation appears to be related to the disappearance (with detuning) of the heteroclinic structural basis for the stable manifold which exists in resonance. This is in contrast to the evidence reported by Tang and Weiss (Phys. Rev. A 49 (1994) 1296) of a cusped map for both the period doublin…
The Ising–Bloch transition in degenerate optical parametric oscillators
2003
Domain walls in type I degenerate optical parametric oscillators are numerically investigated. Both steady Ising and moving Bloch walls are found, bifurcating one into another through a nonequilibrium Ising--Bloch transition. Bloch walls are found that connect either homogeneous or roll planforms. Secondary bifurcations affecting Bloch wall movement are characterized that lead to a transition from a steady drift state to a temporal chaotic movement as the system is moved far from the primary, Ising--Bloch bifurcation. Two kinds of routes to chaos are found, both involving tori: a usual Ruelle-Takens and an intermittent scenarios.
Ramsey interferometry of non-Hermitian quantum impurities
2020
We introduce a Ramsey pulse scheme which extracts the non-Hermitian Hamiltonian associated to an arbitrary Lindblad dynamics. We propose a realted protocol to measure via interferometry a generalised Loschmidt echo of a generic state evolving in time with the non-Hermitian Hamiltonian itself, and we apply the scheme to a one-dimensional weakly interacting Bose gas coupled to a stochastic atomic impurity. The Loschmidt echo is mapped into a functional integral from which we calculate the long-time decohering dynamics at arbitrary impurity strengths. For strong dissipation we uncover the phenomenology of a quantum many-body Zeno effect: corrections to the decoherence exponent resulting from t…
Vacuum induced spin-1/2 Berry's phase.
2002
We calculate the Berry phase of a spin-1/2 particle in a magnetic field considering the quantum nature of the field. The phase reduces to the standard Berry phase in the semiclassical limit and eigenstate of the particle acquires a phase in the vacuum. We also show how to generate a vacuum induced Berry phase considering two quantized modes of the field which has a interesting physical interpretation.
Quantum chimera states
2014
Abstract We study a theoretical model of closed quasi-hermitian chain of spins which exhibits quantum analogues of chimera states, i.e. long life classical states for which a part of an oscillator chain presents an ordered dynamics whereas another part presents a disordered dynamics. For the quantum analogue, the chimera behaviour deals with the entanglement between the spins of the chain. We discuss the entanglement properties, quantum chaos, quantum disorder and semi-classical similarity of our quantum chimera system. The quantum chimera concept is novel and induces new perspectives concerning the entanglement of multipartite systems.
On the Multifractal Character of the Lorenz Attractor
1992
A detailed analysis of the Lorenz attractor in connection with generalized dimensions is presented in this work. Different methods have been employed to estimate these dimensions. Two of them are of standard type. A new method, based on the minimal spanning tree of the point distribution, is extensively tested in this work. It turns out that the Lorenz attractor is very appropriate for being analyzed through this technique, which produces a very clean estimate of the extrema scaling indices α min and α max . The different methods give qualitatively the same result: The Lorenz attractor has a multifractal character
Billiards in magnetic fields: A molecular dynamics approach
2009
We present a computational scheme based on classical molecular dynamics to study chaotic billiards in static external magnetic fields. The method allows to treat arbitrary geometries and several interacting particles. We test the scheme for rectangular single-particle billiards in magnetic fields and find a sequence of regularity islands at integer aspect ratios. In the case of two Coulomb-interacting particles the dynamics is dominated by chaotic behavior. However, signatures of quasiperiodicity can be identified at weak interactions, as well as regular trajectories at strong magnetic fields. Our scheme provides a promising tool to monitor the classical limit of many-electron semiconductor…