Search results for "Chaotic dynamics"
showing 10 items of 197 documents
Looking More Closely at the Rabinovich-Fabrikant System
2016
Recently, we looked more closely into the Rabinovich–Fabrikant system, after a decade of study [Danca & Chen, 2004], discovering some new characteristics such as cycling chaos, transient chaos, chaotic hidden attractors and a new kind of saddle-like attractor. In addition to extensive and accurate numerical analysis, on the assumptive existence of heteroclinic orbits, we provide a few of their approximations.
Scaling behaviour of non-hyperbolic coupled map lattices
2006
Coupled map lattices of non-hyperbolic local maps arise naturally in many physical situations described by discretised reaction diffusion equations or discretised scalar field theories. As a prototype for these types of lattice dynamical systems we study diffusively coupled Tchebyscheff maps of N-th order which exhibit strongest possible chaotic behaviour for small coupling constants a. We prove that the expectations of arbitrary observables scale with \sqrt{a} in the low-coupling limit, contrasting the hyperbolic case which is known to scale with a. Moreover we prove that there are log-periodic oscillations of period \log N^2 modulating the \sqrt{a}-dependence of a given expectation value.…
The pianigiani-yorke measure for topological markov chains
1997
We prove the existence of a Pianigiani-Yorke measure for a Markovian factor of a topological Markov chain. This measure induces a Gibbs measure in the limit set. The proof uses the contraction properties of the Ruelle-Perron-Frobenius operator.
A fractal set from the binary reflected Gray code
2005
The permutation associated with the decimal expression of the binary reflected Gray code with $N$ bits is considered. Its cycle structure is studied. Considered as a set of points, its self-similarity is pointed out. As a fractal, it is shown to be the attractor of a IFS. For large values of $N$ the set is examined from the point of view of time series analysis
Construction of chaotic dynamical system
2010
The first‐order difference equation xn+ 1 = f(xn ), n = 0,1,…, where f: R → R, is referred as an one‐dimensional discrete dynamical system. If function f is a chaotic mapping, then we talk about chaotic dynamical system. Models with chaotic mappings are not predictable in long‐term. In this paper we consider family of chaotic mappings in symbol space S 2. We use the idea of topological semi‐conjugacy and so we can construct a family of mappings in the unit segment such that it is chaotic. First published online: 09 Jun 2011
Massive evaluation and analysis of Poincar�� recurrences on grids of initial data: a tool to map chaotic diffusion
2020
We present a novel numerical method aimed to characterize global behaviour, in particular chaotic diffusion, in dynamical systems. It is based on an analysis of the Poincar\'e recurrence statistics on massive grids of initial data or values of parameters. We concentrate on Hamiltonian systems, featuring the method separately for the cases of bounded and non-bounded phase spaces. The embodiments of the method in each of the cases are specific. We compare the performances of the proposed Poincar\'e recurrence method (PRM) and the custom Lyapunov exponent (LE) methods and show that they expose the global dynamics almost identically. However, a major advantage of the new method over the known g…
A wavelet-based tool for studying non-periodicity
2010
This paper presents a new numerical approach to the study of non-periodicity in signals, which can complement the maximal Lyapunov exponent method for determining chaos transitions of a given dynamical system. The proposed technique is based on the continuous wavelet transform and the wavelet multiresolution analysis. A new parameter, the \textit{scale index}, is introduced and interpreted as a measure of the degree of the signal's non-periodicity. This methodology is successfully applied to three classical dynamical systems: the Bonhoeffer-van der Pol oscillator, the logistic map, and the Henon map.
Short chaotic strings and their behaviour in the scaling region
2008
Coupled map lattices are a paradigm of higher-dimensional dynamical systems exhibiting spatio-temporal chaos. A special case of non-hyperbolic maps are one-dimensional map lattices of coupled Chebyshev maps with periodic boundary conditions, called chaotic strings. In this short note we show that the fine structure of the self energy of this chaotic string in the scaling region (i.e. for very small coupling) is retained if we reduce the length of the string to three lattice points.
Analytical properties of horizontal visibility graphs in the Feigenbaum scenario
2012
Time series are proficiently converted into graphs via the horizontal visibility (HV) algorithm, which prompts interest in its capability for capturing the nature of different classes of series in a network context. We have recently shown [1] that dynamical systems can be studied from a novel perspective via the use of this method. Specifically, the period-doubling and band-splitting attractor cascades that characterize unimodal maps transform into families of graphs that turn out to be independent of map nonlinearity or other particulars. Here we provide an in depth description of the HV treatment of the Feigenbaum scenario, together with analytical derivations that relate to the degree di…
Feigenbaum graphs: a complex network perspective of chaos
2011
The recently formulated theory of horizontal visibility graphs transforms time series into graphs and allows the possibility of studying dynamical systems through the characterization of their associated networks. This method leads to a natural graph-theoretical description of nonlinear systems with qualities in the spirit of symbolic dynamics. We support our claim via the case study of the period-doubling and band-splitting attractor cascades that characterize unimodal maps. We provide a universal analytical description of this classic scenario in terms of the horizontal visibility graphs associated with the dynamics within the attractors, that we call Feigenbaum graphs, independent of map…