Search results for "Chaotic dynamics"
showing 10 items of 197 documents
Chaotic behaviour in deformable models: the asymmetric doubly periodic oscillators
2002
Abstract The motion of a particle in a one-dimensional perturbed asymmetric doubly periodic (ASDP) potential is investigated analytically and numerically. A simple physical model for calculating analytically the Melnikov function is proposed. The onset of chaos is studied through an analysis of the phase space, a construction of the bifurcation diagram and a computation of the Lyapunov exponent. Theory predicts the regions of chaotic behaviour of orbits in a good agreement with computer calculations.
Coupled Discrete Fractional-Order Logistic Maps
2021
This paper studies a system of coupled discrete fractional-order logistic maps, modeled by Caputo’s delta fractional difference, regarding its numerical integration and chaotic dynamics. Some interesting new dynamical properties and unusual phenomena from this coupled chaotic-map system are revealed. Moreover, the coexistence of attractors, a necessary ingredient of the existence of hidden attractors, is proved and analyzed.
Dynamical environments of relativistic binaries: The phenomenon of resonance shifting
2019
In this article, we explore both numerically and analytically how the dynamical environments of mildly relativistic binaries evolve with increasing the general relativity factor $\gamma$ (the normalized inverse of the binary size measured in the units of the gravitational radius corresponding to the total mass of the system). Analytically, we reveal a phenomenon of the relativistic shifting of mean-motion resonances: on increasing $\gamma$, the resonances between the test particle and the central binary shift, due to the relativistic variation of the mean motions of the primary and secondary binaries and the relativistic advance of the tertiary's pericenter. To exhibit the circumbinary dyna…
Noncommutative space and the low-energy physics of quasicrystals
2008
We prove that the effective low-energy, nonlinear Schroedinger equation for a particle in the presence of a quasiperiodic potential is the potential-free, nonlinear Schroedinger equation on noncommutative space. Thus quasiperiodicity of the potential can be traded for space noncommutativity when describing the envelope wave of the initial quasiperiodic wave.
Modified post-bifurcation dynamics and routes to chaos from double-Hopf bifurcations in a hyperchaotic system
2012
In order to understand the onset of hyperchaotic behavior recently observed in many systems, we study bifurcations in the modified Chen system leading from simple dynamics into chaotic regimes. In particular, we demonstrate that the existence of only one fixed point of the system in all regions of parameter space implies that this simple point attractor may only be destabilized via a Hopf or double Hopf bifurcation as system parameters are varied. Saddle-node, transcritical and pitchfork bifurcations are precluded. The normal form immediately following double Hopf bifurcations is constructed analytically by the method of multiple scales. Analysis of this generalized double Hopf normal form …
Post-Double Hopf Bifurcation Dynamics and Adaptive Synchronization of a Hyperchaotic System
2012
In this paper a four-dimensional hyperchaotic system with only one equilibrium is considered and its double Hopf bifurcations are investigated. The general post-bifurcation and stability analysis are carried out using the normal form of the system obtained via the method of multiple scales. The dynamics of the orbits predicted through the normal form comprises possible regimes of periodic solutions, two-period tori, and three-period tori in parameter space. Moreover, we show how the hyperchaotic synchronization of this system can be realized via an adaptive control scheme. Numerical simulations are included to show the effectiveness of the designed control.
Horizontal visibility graphs: exact results for random time series
2009
The visibility algorithm has been recently introduced as a mapping between time series and complex networks. This procedure allows us to apply methods of complex network theory for characterizing time series. In this work we present the horizontal visibility algorithm, a geometrically simpler and analytically solvable version of our former algorithm, focusing on the mapping of random series (series of independent identically distributed random variables). After presenting some properties of the algorithm, we present exact results on the topological properties of graphs associated with random series, namely, the degree distribution, the clustering coefficient, and the mean path length. We sh…
Approximate renormalization-group transformation for Hamiltonian systems with three degrees of freedom
1999
We construct an approximate renormalization transformation that combines Kolmogorov-Arnold-Moser (KAM)and renormalization-group techniques, to analyze instabilities in Hamiltonian systems with three degrees of freedom. This scheme is implemented both for isoenergetically nondegenerate and for degenerate Hamiltonians. For the spiral mean frequency vector, we find numerically that the iterations of the transformation on nondegenerate Hamiltonians tend to degenerate ones on the critical surface. As a consequence, isoenergetically degenerate and nondegenerate Hamiltonians belong to the same universality class, and thus the corresponding critical invariant tori have the same type of scaling prop…
Chaotic dynamics around cometary nuclei
2017
We apply a generalized Kepler map theory to describe the qualitative chaotic dynamics around cometary nuclei, based on accessible observational data for five comets whose nuclei are well-documented to resemble dumb-bells. The sizes of chaotic zones around the nuclei and the Lyapunov times of the motion inside these zones are estimated. In the case of Comet 1P/Halley, the circumnuclear chaotic zone seems to engulf an essential part of the Hill sphere, at least for orbits of moderate to high eccentricity.
The Lyapunov dimension formula for the global attractor of the Lorenz system
2015
The exact Lyapunov dimension formula for the Lorenz system has been analytically obtained first due to G.A.Leonov in 2002 under certain restrictions on parameters, permitting classical values. He used the construction technique of special Lyapunov-type functions developed by him in 1991 year. Later it was shown that the consideration of larger class of Lyapunov-type functions permits proving the validity of this formula for all parameters of the system such that all the equilibria of the system are hyperbolically unstable. In the present work it is proved the validity of the formula for Lyapunov dimension for a wider variety of parameters values, which include all parameters satisfying the …