Search results for "Char"

showing 10 items of 11394 documents

"Figure 11" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron $R_{dA}$ 60-88% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figure 8" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron RdA 0-20% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figure 9" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron $R_{dA}$ 20-40% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figure 7" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron $R_{dA}$ 0-100% d+Au collisions. The nuclear modification factors $R_{dA}$ and $R_{AA}$ for minimum bias $d$+Au and Au+Au collisions, for the $\pi^{0}$ and $e^{\pm}_{HF}$. The two boxes on the right side of the plot represent the global uncertainties in the $d$+Au (left) and Au+Au (right) values of $N_{coll}$ . An additional common global scaling uncertainty of 9.7% on $R_{dA}$ and $R_{AA}$ from the $p+p$ reference data is omitted for clarity.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figures 3-6" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron yield, $d$+Au $\implies$ CHARGED X. Electrons from heavy flavor decays, separated by centrality. The lines represent a fit to the previous $p+p$ result [23], scaled by $N_{coll}$. The inset shows the ratio of photonic background electrons determined by the converter and cocktail methods for Minimum Bias $d$+Au collisions, with error bars (boxes) that represent the statistical uncertainty on the converter data (systematic uncertainty on the photonic-electron cocktail).

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figure 10" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron $R_{dA}$ 40-60% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figures 1-2" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron yield, Run-8 $p$ + $p$, $d$+Au collisions. Electrons from heavy flavor decays, separated by centrality. The lines represent a fit to the previous $p+p$ result [23], scaled by $N_{coll}$. The inset shows the ratio of photonic background electrons determined by the converter and cocktail methods for Minimum Bias $d$+Au collisions, with error bars (boxes) that represent the statistical uncertainty on the converter data (systematic uncertainty on the photonic-electron cocktail).

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

Ficción y compromiso ontológico

2014

En este trabajo me ocupo de la semántica de los términos de ficción, en el marco de una posición de tipo abstractista (KRIPKE 2011 y 2013, VAN INWAGEN 1977, SALMON 1998 y 2002, THOMASSON 1999, PREDELLI 1997, 2002 y 2005 y VOLTOLINI 2011). En particular, me concentro en dos problemas que afectan a este tipo de posiciones: el primero de ellos es dar cuenta de la verdad intuitiva de enunciados como "Ulises duerme en la playa de Ithaca"; el segundo es explicar la aceptación, también intuitiva, de que "Ulises no existe" es un enunciado verdadero. In this paper I am concerned with a variant of Kripke´s abstractist theory of fiction, namely, the semantic theory according to which proper names and …

//purl.org/becyt/ford/6 [https]CommunicationVERDAD EN LA FICCIÓNProperty (philosophy)business.industryUSOS FICTIVOS Y METAFICTIVOSFilosofía Ética y Religión//purl.org/becyt/ford/6.3 [https]Semantic theory of truthTÉRMINOS DE FICCIÓNFocus (linguistics)EpistemologyHUMANIDADESCharacter (mathematics)Estudios ReligiososProper nounCreative writingRelation (history of concept)businessPsychologyREFERENCIA DIRECTAStorytelling
researchProduct

Effect of space charge on the negative oxygen flux during reactive sputtering

2017

Negative ions often play a distinctive role in the phase formation during reactive sputter deposition. The path of these high energetic ions is often assumed to be straight. In this paper, it is shown that in the context of reactive magnetron sputtering space charge effects are decisive for the energetic negative ion trajectories. To investigate the effect of space charge spreading, reactive magnetron sputter experiments were performed in compound mode with target materials that are expected to have a high secondary ion emission yield (MgO and CeO2). By the combination of energy flux measurements, and simulations, a quantitative value for the negative oxygen ion yield can be derived.

010302 applied physicsAcoustics and UltrasonicsChemistryEnergy fluxContext (language use)02 engineering and technologySputter deposition021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSpace chargeMolecular physicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonCondensed Matter::Materials SciencePhysics::Plasma PhysicsSputteringYield (chemistry)0103 physical sciencesOxygen fluxAtomic physics0210 nano-technologyJournal of Physics D: Applied Physics
researchProduct

Structural characterization and electrochemical hydrogen storage properties of Ti2LxZrxNi (x [ 0, 0.1, 0.2) alloys prepared by mechanical alloying

2013

International audience; Nominal Ti2Ni was synthesized under argon atmosphere at room temperature using a planetary high-energy ball mill. The effect of milling time and Zr substitution for Ti on the microstructure was characterized by XRD, SEM and TEM, and the discharge capacities of Ti2xZrxNi (x 1/4 0, 0.1, 0.2) were examined by electrochemical measurements at galvanostatic conditions. XRD analysis shows that amorphous phase of Ti2Ni can be elaborated by 60 h of milling, whereas Zr substitution hinders amorphization process of the system. The products of ball milling nominal Ti2xZrxNi (x 1/4 0.1, 0.2) were austenitic (Ti, Zr)Ni and partly TiO, despite the fact that the operation was carrie…

010302 applied physicsAusteniteMaterials scienceRenewable Energy Sustainability and the Environment020209 energyMetallurgyEnergy Engineering and Power Technology02 engineering and technologyCondensed Matter PhysicsElectrochemistryMicrostructure01 natural sciences7. Clean energyCharacterization (materials science)Amorphous solidHydrogen storageFuel TechnologyChemical engineering0103 physical sciences0202 electrical engineering electronic engineering information engineering[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsBall millCurrent density
researchProduct