Search results for "Characters"

showing 10 items of 83 documents

Brauer's fixed-point-formula as a consequence of Thompson's order-formula

1991

CombinatoricsPure mathematicsBrauer's theorem on induced charactersGeneral MathematicsOrder (group theory)Fixed pointMathematicsArchiv der Mathematik
researchProduct

The number of lifts of a Brauer character with a normal vertex

2011

AbstractIn this paper we examine the behavior of lifts of Brauer characters in p-solvable groups. In the main result, we show that if φ∈IBr(G) has a normal vertex Q and either p is odd or Q is abelian, then the number of lifts of φ is at most |Q:Q′|. As a corollary, we prove that if φ∈IBr(G) has an abelian vertex subgroup Q, then the number of lifts of φ in Irr(G) is at most |Q|.

CombinatoricsVertex (graph theory)LiftsAlgebra and Number TheoryBrauer's theorem on induced charactersCorollarySolvable groupAbelian groupFinite groupsSolvable groupsBrauer charactersMathematicsJournal of Algebra
researchProduct

Complex group algebras of finite groups: Brauer’s Problem 1

2005

Brauer’s Problem 1 asks the following: what are the possible complex group algebras of finite groups? It seems that with the present knowledge of representation theory it is not possible to settle this question. The goal of this paper is to announce a partial solution to this problem. We conjecture that if the complex group algebra of a finite group does not have more than a fixed number m m of isomorphic summands, then its dimension is bounded in terms of m m . We prove that this is true for every finite group if it is true for the symmetric groups.

Computer Science::Machine LearningModular representation theoryPure mathematicsFinite groupBrauer's theorem on induced charactersGroup (mathematics)General MathematicsMathematicsofComputing_GENERALComputer Science::Digital LibrariesRepresentation theoryCombinatoricsStatistics::Machine LearningGroup of Lie typeSymmetric groupComputer Science::Mathematical SoftwareComputer Science::Programming LanguagesBrauer groupMathematicsElectronic Research Announcements of the American Mathematical Society
researchProduct

Some problems about products of conjugacy classes in finite groups

2020

[EN] We summarize several results about non-simplicity, solvability and normal structure of finite groups related to the number of conjugacy classes appearing in the product or the power of conjugacy classes. We also collect some problems that have only been partially solved.

Conjugacy classesMathematics::Group TheorycharactersSolvabilityProducts of conjugacy classesCharactersMATEMATICA APLICADAMatemàticasolvabilityconjugacy classesproducts of conjugacy classes
researchProduct

On the orders of zeros of irreducible characters

2009

Let G be a finite group and p a prime number. We say that an element g in G is a vanishing element of G if there exists an irreducible character χ of G such that χ (g) = 0. The main result of this paper shows that, if G does not have any vanishing element of p-power order, then G has a normal Sylow p-subgroup. Also, we prove that this result is a generalization of some classical theorems in Character Theory of finite groups. © 2008 Elsevier Inc. All rights reserved.

Discrete mathematicsFinite groupPure mathematicsBrauer's theorem on induced charactersAlgebra and Number Theoryirreducible character zeroCharacter theorySylow theoremsPrime numberIrreducible elementFinite groupsCharacter (mathematics)Order (group theory)Zeros of charactersCharactersMathematics
researchProduct

Brauer characters and coprime action

2016

Abstract It is an open problem to show that under a coprime action, the number of invariant Brauer characters of a finite group is the number of the Brauer characters of the fixed point subgroup. We prove that this is true if the non-abelian simple groups satisfy a stronger condition.

Discrete mathematicsModular representation theoryPure mathematicsFinite groupAlgebra and Number TheoryBrauer's theorem on induced charactersCoprime integers010102 general mathematics02 engineering and technologyFixed point021001 nanoscience & nanotechnology01 natural sciencesSimple group0101 mathematicsInvariant (mathematics)Mathematics::Representation Theory0210 nano-technologyBrauer groupMathematicsJournal of Algebra
researchProduct

Group graded algebras and multiplicities bounded by a constant

2013

AbstractLet G be a finite group and A a G-graded algebra over a field of characteristic zero. When A is a PI-algebra, the graded codimensions of A are exponentially bounded and one can study the corresponding graded cocharacters via the representation theory of products of symmetric groups. Here we characterize in two different ways when the corresponding multiplicities are bounded by a constant.

Discrete mathematicsPure mathematicsFinite groupAlgebra and Number TheoryMathematics::Commutative AlgebraGroup (mathematics)Zero (complex analysis)Polynomial identities Graded algebras cocharactersRepresentation theorySettore MAT/02 - AlgebraSymmetric groupBounded functionAlgebra over a fieldConstant (mathematics)MathematicsJournal of Pure and Applied Algebra
researchProduct

Quotients of Fermat curves and a Hecke character

2005

AbstractWe explicitly identify infinitely many curves which are quotients of Fermat curves. We show that some of these have simple Jacobians with complex multiplication by a non-cyclotomic field. For a particular case we determine the local zeta functions with two independent methods. The first uses Jacobi sums and the second applies the general theory of complex multiplication, we verify that both methods give the same result.

Fermat's Last TheoremDiscrete mathematicsAlgebra and Number TheoryMathematics::Number TheoryApplied MathematicsGeneral EngineeringComplex multiplicationFermat's theorem on sums of two squaresComplex multiplicationField (mathematics)Wieferich primeFermat's factorization methodHecke characterHecke charactersTheoretical Computer Sciencesymbols.namesakeJacobi sumsSimple (abstract algebra)Fermat curvessymbolsEngineering(all)MathematicsFinite Fields and Their Applications
researchProduct

Characterizing normal Sylow p-subgroups by character degrees

2012

Abstract Suppose that G is a finite group, let p be a prime and let P ∈ Syl p ( G ) . We prove that P is normal in G if and only if all the irreducible constituents of the permutation character ( 1 P ) G have degree not divisible by p.

Finite groupAlgebra and Number TheoryDegree (graph theory)010102 general mathematicsSylow theoremsPrimitive permutation group01 natural sciencesPrime (order theory)Characters of finite groupsCharacter degrees010101 applied mathematicsCombinatoricsPermutationCharacter (mathematics)0101 mathematicsMathematicsJournal of Algebra
researchProduct

Quadratic characters in groups of odd order

2009

Abstract We prove that in a finite group of odd order, the number of irreducible quadratic characters is the number of quadratic conjugacy classes.

Finite groupAlgebra and Number TheoryQuadratic functionFinite groupsGalois actionCombinatoricsConjugacy classesQuadratic fieldsMathematics::Group TheoryConjugacy classQuadratic equationCharacter tableOrder (group theory)Binary quadratic formQuadratic fieldCharactersMathematicsJournal of Algebra
researchProduct