Search results for "Charge Density"
showing 10 items of 206 documents
Oxide/water interfaces: how the surface chemistry modifies interfacial water properties
2012
The organization of water at the interface with silica and alumina oxides is analysed using density functional theory-based molecular dynamics simulation (DFT-MD). The interfacial hydrogen bonding is investigated in detail and related to the chemistry of the oxide surfaces by computing the surface charge density and acidity. We find that water molecules hydrogen-bonded to the surface have different orientations depending on the strength of the hydrogen bonds and use this observation to explain the features in the surface vibrational spectra measured by sum frequency generation spectroscopy. In particular, 'ice-like' and 'liquid-like' features in these spectra are interpreted as the result o…
Methylium Ions with OPV Chains − New NIR Dyes
2001
Carbinols, which contain three OPV chains, were generated in convergent syntheses. The extension of the conjugation leads to a bathochromic effect that shifts the absorption from the UV into the visible region. The carbinol series has a convergence limit of the absorption at λmax = 415 nm. The corresponding carbenium ions exhibit a stronger bathochromic shift with the increasing number of repeating units in each chain. Thus, NIR dyes were obtained which show a convergence limit at λmax = 879 nm. The charge distribution in the ground state of the carbocations is discussed on the basis of 13C NMR spectroscopic data.
Molecular scale structure and dynamics at an ionic liquid/electrode interface.
2017
After a century of research, the potential-dependent ion distribution at electrode/electrolyte interfaces is still under debate. In particular for solvent-free electrolytes such as room-temperature ionic liquids, classical theories for the electrical double layer are not applicable. Using a combination of in situ high-energy X-ray reflectivity and impedance spectroscopy measurements, we determined this distribution with sub-molecular resolution. We find oscillatory charge density profiles consisting of alternating anion- and cation-enriched layers at both cathodic and anodic potentials. This structure is shown to arise from the same ion-ion correlations dominating the liquid bulk structure.…
A pH-tunable nanofluidic diode: electrochemical rectification in a reconstituted single ion channel.
2006
We report pH-dependent electrochemical rectification in a protein ion channel (the bacterial porin OmpF) reconstituted on a planar phospholipid membrane. The measurements performed at single-channel level show that the electric current is controlled by the protein fixed charge and it can be tuned by adjusting the local pH. Under highly asymmetric pH conditions, the channel behaves like a liquid diode. Unlike other nanofluidic devices that display also asymmetric conductance, here the microscopic charge distribution of the system can be explored by using the available high-resolution (2.4 A) channel crystallographic structure. Continuum electrostatics calculations confirm the hypothesized bi…
Nonlinear chiral transport in Dirac semimetals
2018
We study the current of chiral charge density in a Dirac semimetal with two Dirac points in momentum space, subjected to an externally applied time dependent electric field and in the presence of a magnetic field. Based on the kinetic equation approach, we find contributions to the chiral charge current, that are proportional to the second power of the electric field and to the first and second powers of the magnetic field, describing the interplay of the chiral anomaly and the drift motion of electrons moving under the action of electric and magnetic fields.
Charge-density analysis of 1-nitroindoline: refinement quality using free R factors and restraints
2011
Nitramines and related N-nitro compounds have attracted significant attention owing to their use in rocket fuel and as explosives. The charge density of 1-nitroindoline was determined experimentally and from theoretical calculations. Electron-density refinements were performed using the multipolar atom formalism. In order to design the ideal restraint strategy for the charge-density parameters, R-free analyses were performed involving a series of comprehensive refinements. Different weights were applied to the charge-density restraints, namely the similarity between chemically equivalent atoms and local symmetry. Additionally, isotropic thermal motion and an anisotropic model calculated by …
Ultrafast Metamorphosis of a Complex Charge Density Wave in Tantalumdiselenite
2016
Using ultrafast electron diffraction, we record the transformation between a nearly-commensurate and an incommensurate charge-density-wave in 1T-TaS2, which takes place orders of magnitude faster than previously observed for commensurate-to-incommensurate transitions.
Ultrafast Metamorphosis of a Complex Charge-Density Wave
2015
Modulated phases, commensurate or incommensurate with the host crystal lattice, are ubiquitous in solids. The transition between such phases involves formation and rearrangement of domain walls and is generally slow. Using ultrafast electron diffraction, we directly record the photoinduced transformation between a nearly commensurate and an incommensurate charge-density-wave phase in 1T-TaS(2). The transformation takes place on the picosecond time scale, orders of magnitude faster than previously observed for commensurate-to-incommensurate transitions. The transition speed and mechanism can be linked to the peculiar nanoscale structure of the photoexcited nearly commensurate phase.
New BEDT-TTF/[Fe(C5O5)3]3- Hybrid System: Synthesis, Crystal Structure, and Physical Properties of a Chirality-Induced α Phase and a Novel Magnetic …
2007
The paramagnetic and chiral anion [Fe(C5O5)3]3- (C5O52-=croconate) has been combined with the organic donor BEDT-TTF (=ET=bis(ethylenedithio)tetrathiafulvalene) to synthesize a novel paramagnetic semiconductor with the first chirality-induced alpha phase, alpha-(BEDT-TTF)5[Fe(C5O5)3].5H2O (1), and one of the few known paramagnetic molecular metals, beta-(BEDT-TTF)5[Fe(C5O5)3].C6H5CN (2). Both compounds present layers of BEDT-TTF molecules, with the alpha or beta packing modes, alternating with layers containing the high-spin S=5/2 Fe(III) anions and solvent molecules. In the alpha phase, the alternation of the chiral [Fe(C5O5)3]3- anions along the direction perpendicular to the BEDT-TTF cha…
Propagation of uncertainties in the Skyrme energy-density-functional model
2013
Parameters of nuclear energy-density-functionals (EDFs) are always derived by an optimization to experimental data. For the minima of appropriately defined penalty functions, a statistical sensitivity analysis provides the uncertainties of the EDF parameters. To quantify theoretical errors of observables given by the model, we studied the propagation of uncertainties within the UNEDF0 Skyrme-EDF approach. We found that typically the standard errors rapidly increase towards neutron rich nuclei. This can be linked to large uncertainties of the isovector coupling constants of the currently used EDFs.