Search results for "Charging"

showing 10 items of 52 documents

Efficient contactless power transfer system for EVs

2016

Based on the inductive power transfer (IPT), the contactless approach allows safe and comfortable operations of battery charging for Electric Vehicles (EVs). In this paper, a contactless system particularly suitable for E-bike battery charging is proposed. A practical realization of the system has been carried out, aiming at the system evaluation in terms of working and efficiency. Through a phase shift modulation, a power regulation has been implemented. The target power level is 100 W.

Battery (electricity)Power regulationbusiness.industryComputer science020208 electrical & electronic engineeringelectric vehicleElectrical engineeringSystem evaluation02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciPower levelelectric vehicles; inductive power transfer; contactless charging; vehicle-to-grid.ModulationLogic gate0202 electrical engineering electronic engineering information engineeringcontactless chargingMaximum power transfer theoremComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMS020201 artificial intelligence & image processinginductive power transfervehicle-to-gridbusinessRealization (systems)electric vehicles
researchProduct

Experimental Investigation on Magnetic Field Effects of IPT for Electric Bikes

2018

The wireless power transmission (WPT) is increasingly representing a promising technology and an innovative solution, especially for the electric vehicles (EVs) battery charging. The inductive power transfer (IPT) is the standard technology of wireless charging: the energy transfer occurs between two magnetically coupled coils. The IPT-based battery charging is especially convenient for E-bikes and the physiological effects related to the generated magnetic fields should be estimated. In this context, this work presents a 200Â W prototype of wireless battery charger for E-bikes. In addition, the measurements regarding the surrounding magnetic field are given in detail in order to evaluate t…

Battery (electricity)Power transmissionbusiness.industryComputer science020209 energyMechanical Engineering020208 electrical & electronic engineeringElectrical engineeringEnergy Engineering and Power Technologymagnetic field02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciMagnetic fieldSettore ING-IND/31 - ElettrotecnicaHardware_GENERALElectric bicycle0202 electrical engineering electronic engineering information engineeringWirelesswireless battery charginginductive power transferElectrical and Electronic EngineeringbusinessSettore ING-INF/07 - Misure Elettriche E Elettroniche
researchProduct

An efficient wireless power transfer prototype for electrical vehicles

2017

Based on the inductive power transfer (IPT), the contactless approach allows safe and comfortable operations of battery charging for Electric Vehicles (EVs). In this paper, a contactless system particularly suitable for E-bike battery charging is proposed. A practical realization of the system has been carried out, aiming at the system evaluation in terms of working and efficiency. Through a phase shift modulation, a power regulation has been implemented. The target power level is 100 W.

Battery (electricity)Renewable Energy Sustainability and the EnvironmentComputer sciencebusiness.industry020209 energy020208 electrical & electronic engineeringElectrical engineeringVehicle-to-gridEnergy Engineering and Power TechnologyVehicle-to-grid02 engineering and technologyElectric vehicleInductive power transferRenewable energyModulationPower electronics0202 electrical engineering electronic engineering information engineeringMaximum power transfer theoremComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMSWireless power transferbusinessContactless chargingRealization (systems)2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)
researchProduct

A Bidirectional IPT system for Electrical Bicycle Contactless Energy Transfer

2019

Contactless Energy Transfer characterized by Inductive Power Transfer (IPT) is a viable solution for Electric Vehicle (EV) battery charging, giving advantages in terms of safety, comfort and automatism of the recharging operation. IPT is a smart option for the Vehicle- To-Grid (V2G) implementation as well: the EV's battery can provide power to other users, if possible and if required, in order to adequately respond to an active demand scenario. IPT shall therefore allow a Bidirectional power flow, so that it can be properly defined as Bidirectional IPT (BIPT). In this paper, a 300 W BIPT system for E-bikes is proposed and experimental results are shown as well. Considering power level and s…

Battery (electricity)business.product_categoryComputer science020209 energyEnergy transferVehicle-to-grid010103 numerical & computational mathematics02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciSettore ING-INF/01 - Elettronica01 natural sciencesPower levelElectric bicycleElectric vehicle0202 electrical engineering electronic engineering information engineeringMaximum power transfer theorem0101 mathematicsWireless battery chargingContactless energy transferbusiness.industryElectrical engineeringVehicle-to-gridInductive power transferPower (physics)Power flowbusiness2019 8th International Conference on Renewable Energy Research and Applications (ICRERA)
researchProduct

Control subsystem design for wireless power transfer

2014

Recently, the wireless power transfer has been increasingly employed. Particularly for the electric vehicles, the wireless solution is attractive for contactless battery charging, based on the Inductive Power Transfer (IPT). In this paper, a 150W prototype for IPT-based battery charging is presented and design criteria are reported. In addition to the power stage analysis, a proper control strategy is proposed. Simulation and experimental results are shown. The proposed control method aims at regulating the load current against variations in the magnetic coupling, so that the required amount of power can be supplied despite of unexpected decreases in the coupling efficiency.

Battery (electricity)control subsystem designEngineeringControl (management)IPT-based battery chargingWireless communicationwireless power transfermagnetic couplingCoilSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciSettore ING-INF/01 - ElettronicaBatterieReceiverCouplingcontactless battery charginginductive power transmissioncontrol system synthesiWirelessMaximum power transfer theoremWireless power transferinductive power transferInductancepower stage analysiecondary cellbusiness.industryElectrical engineeringTransmittercoupling efficiencyInductive couplingPower (physics)power flow controlInductancebusinessload current regulation
researchProduct

Experimental test on a Contactless Power Transfer system

2014

Contactless Power Transfer (CPT) is an ever-growing technology in automotive market, due to the significant improvement brought by it to battery charging operation in terms of safety and comfort. CPT is based on inductive coupling between two coils, so that power cords can be avoided for vehicles battery charging and an important contribution towards a smarter mobility can arise. In this paper, a CPT prototype for E-bike is proposed. Magnetic design and power electronics system are described. Experimental results deriving from laboratory tests are presented and power efficiency of the system is addressed.

Battery (electricity)vehicular technologieEngineeringbusiness.industryElectrical engineeringcontactless power transferSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciInductive couplingPower (physics)Power electronicsPower modulewireless battery chargingMaximum power transfer theoreminductive power transferAutomotive marketbusinessElectrical efficiency2014 Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER)
researchProduct

Priority Based Coordinated Electric Vehicle Charging System for Heterogeneous Traffic

2020

Despite the environmental and health merits associated with Electric vehicles (EVs), a massive deployment of EVs tends to create new technical and economic challenges for power systems. This is being addressed with different coordinated charging schemes where the charging coordination is distributed across multiple EVs and/or aggregators based on different objectives. This work analyzes an algorithm which maximize the operational profit of a charging station with a high charging station utilization while adhering all the constraints enforced by the utility grid. And it is analyzed the performance of the coordinated charging scheme which facilitates heterogeneous EV users whose arrival is un…

Charging stationElectric power systembusiness.product_categoryComputer scienceSoftware deploymentOn demandDistributed computingElectric vehiclebusinessGridProfit (economics)2020 5th International Conference on Smart and Sustainable Technologies (SpliTech)
researchProduct

Forecasting the diffusion of hydrogen EV refuelling infrastructures in Italy

2019

In Italy the electric vehicle revolution is arrived but it still has difficulties to take off. At the moment hybrid technology would seem the most quoted, due especially to range anxiety. The aim of this work is to understand if the fuel cell technology can find place in Italy. The possibility to use fuel cell to storage electric energy is quite interesting: the charging times will be reduced, and heavy passenger transportation should be easily faced. Basing on the existing history and analysis of the information accessible, this paper addresses the existing e-mobility scenario in Italy and predicts the cities in which a hydrogen refuelling infrastructure should be more remunerative, in ord…

Diffusion (acoustics)InfrastructureRange anxietybusiness.product_category020209 energy02 engineering and technology010501 environmental sciencesEnvironmental economicsE-mobilityElectric vehicle01 natural sciencesCharging stationElectric energyWork (electrical)Order (exchange)Electric vehicleCharging station0202 electrical engineering electronic engineering information engineeringNiche marketbusiness0105 earth and related environmental sciences
researchProduct

Experimental Characterization of a Double Receiver Dynamic Wireless Charging System

2020

The aim of this work is the characterization of a dynamic wireless charging system low power prototype and the validation of a simplified mathematical model of the employed double D coils. The difference between a single receiver and a dual receiver system is also shown, highlighting how the last one can significantly reduce the costs of the charging infrastructure.

Dynamic chargingWork (thermodynamics)Computer sciencebusiness.industry020208 electrical & electronic engineering05 social scienceswireless charging02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici7. Clean energyDynamic chargingDual (category theory)Power (physics)Characterization (materials science)Settore ING-IND/31 - Elettrotecnica0202 electrical engineering electronic engineering information engineeringElectronic engineeringWireless0501 psychology and cognitive sciencesinductive power transferbusiness050107 human factorsReceiver system
researchProduct

Economic evaluation of PV system for EV charging stations: Comparison between matching maximum orientation and storage system employment

2016

This article addresses the problem of the choice of a generation system to be implemented to reduce the impact of charging electric vehicles at University. Based on the behaviour of the student population, it is identified the electrical load. Two possible solutions are evaluated in order to manage the peak load: an orientation of the panels in order to increase the power at defined time and the use of storage system. The main strength and weakness points of two systems are investigated by taking into account the Levelized Cost of Energy.

EngineeringMatching (statistics)Electrical load020209 energyEnergy Engineering and Power Technology02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciAutomotive engineering0202 electrical engineering electronic engineering information engineeringRenewable EnergyCost of electricity by sourceCharging; EVs; Photovoltaic; Energy Engineering and Power Technology; Renewable Energy Sustainability and the EnvironmentEVsSustainability and the EnvironmentOrientation (computer vision)business.industryPhotovoltaic systemElectrical engineering020206 networking & telecommunicationsPower (physics)Settore ING-IND/33 - Sistemi Elettrici Per L'EnergiaSettore ING-IND/31 - ElettrotecnicaComputer data storageEconomic evaluationbusinessPhotovoltaicSettore ING-INF/07 - Misure Elettriche E ElettronicheChargingEV
researchProduct