Search results for "Chemoresistance"
showing 10 items of 18 documents
Epithelial-mesenchymal transition: a new target in anticancer drug discovery
2016
The conversion of cells with an epithelial phenotype into cells with a mesenchymal phenotype, referred to as epithelial-mesenchymal transition, is a critical process for embryonic development that also occurs in adult life, particularly during tumour progression. Tumour cells undergoing epithelial-mesenchymal transition acquire the capacity to disarm the body's antitumour defences, resist apoptosis and anticancer drugs, disseminate throughout the organism, and act as a reservoir that replenishes and expands the tumour cell population. Epithelial-mesenchymal transition is therefore becoming a target of prime interest for anticancer therapy. Here, we discuss the screening and classification o…
When Three Isn't a Crowd: A Digyny Concept for Treatment-Resistant, Near-Triploid Human Cancers.
2019
Near-triploid human tumors are frequently resistant to radio/chemotherapy through mechanisms that are unclear. We recently reported a tight association of male tumor triploidy with XXY karyotypes based on a meta-analysis of 15 tumor cohorts extracted from the Mitelman database. Here we provide a conceptual framework of the digyny-like origin of this karyotype based on the germline features of malignant tumors and adaptive capacity of digyny, which supports survival in adverse conditions. Studying how the recombinatorial reproduction via diploidy can be executed in primary cancer samples and HeLa cells after DNA damage, we report the first evidence that diploid and triploid cell sub-populati…
Proton-coupled folate transporter as a biomarker of outcome to treatment for pleural mesothelioma.
2018
Involvement of non-coding RNAs in chemo- and radioresistance of colorectal cancer
2016
Despite recent progress in understanding the cancer signaling pathways and in developing new therapeutic strategies, however, the resistance of colorectal cancer (CRC) cells to chemo- and radiotherapy represents the main hurdle to the successful treatment, leading to tumor recurrence and, consequently, a poor prognosis. Therefore, overcoming drug and radiation resistance, enhancing drug and radiation sensitivity of CRC cells, and improving the effi cacy of chemo- and radiotherapy have an important signifi cance in the treatment of CRC. The identifi cation of new molecular biomarkers which can predict therapy response and prognosis is one of the most signifi cant aims in pharmacogenomics and…
Molecular Insights Into Therapeutic Potential of Autophagy Modulation by Natural Products for Cancer Stem Cells
2020
Autophagy, a cellular self-digestion process that is activated in response to stress, has a functional role in tumor formation and progression. Cancer stem cells (CSCs) accounting for a minor proportion of total cancer cells-have distinct self-renewal and differentiation abilities and promote metastasis. Researchers have shown that a numeral number of natural products using traditional experimental methods have been revealed to target CSCs. However, the specific role of autophagy with respect to CSCs and tumorigenesis using natural products are still unknown. Currently, CSCs are considered to be one of the causative reasons underlying the failure of anticancer treatment as a result of tumor…
GSK3β as a novel promising target to overcome chemoresistance in pancreatic cancer
2021
Pancreatic cancer is an aggressive malignancy with increasing incidence and poor prognosis due to its late diagnosis and intrinsic chemoresistance. Most pancreatic cancer patients present with locally advanced or metastatic disease characterized by inherent resistance to chemotherapy. These features pose a series of therapeutic challenges and new targets are urgently needed. Glycogen synthase kinase 3 beta (GSK3β) is a conserved serine/threonine kinase, which regulates key cellular processes including cell proliferation, DNA repair, cell cycle progression, signaling and metabolic pathways. GSK3β is implicated in non-malignant and malignant diseases including inflammation, neurodegenerative …
A quest for initiating cells of head and neck cancer and their treatment.
2010
The biology of head and neck squamous cell carcinomas (HNSCC) and other cancers have been related to cancer stem-like cells (CSC). Specific markers, which vary considerably depending on tumor type or tissue of origin, characterize CSC. CSC are cancer initiating, sustaining and mostly quiescent. Compared to bulk tumors, CSC are less sensitive to chemo- and radiotherapy and may have low immunogenicity. Therapeutic targeting of CSC may improve clinical outcome. HNSCC has two main etiologies: human papillomavirus, a virus infecting epithelial stem cells, and tobacco and alcohol abuse. Here, current knowledge of HNSCC-CSC biology is reviewed and parallels to CSC of other origin are drawn where n…
Overcome Chemoresistance: Biophysical and Structural Analysis of Synthetic FHIT-Derived Peptides.
2021
The fragile histidine triad (FHIT) protein is a member of the large and ubiquitous histidine triad (HIT) family of proteins. On the basis of genetic evidence, it has been postulated that the FHIT protein may function as tumor suppressor, implying a role for the FHIT protein in carcinogenesis. Recently, Gaudio et al. reported that FHIT binds and delocalizes annexin A4 (ANXA4) from plasma membrane to cytosol in paclitaxel-resistant lung cancer cells, thus restoring their chemosensitivity to the drug. They also identified the smallest protein sequence of the FHIT still interacting with ANXA4, ranging from position 7 to 13: QHLIKPS. This short sequence of FHIT protein was not only able to bind …
Alterations of DNA Repair in Melanoma Cell Lines Resistant to Cisplatin, Fotemustine, or Etoposide
2000
Resistance to chemotherapy is a common phenomenon in malignant melanoma. In order to assess the role of altered DNA repair in chemoresistant melanoma, we investigated different DNA repair pathways in one parental human melanoma line (MeWo) and in sublines of MeWo selected in vitro for drug resistance against four commonly used drugs (cisplatin, fotemustine, etoposide, and vindesine). Host cell reactivation assays with the plasmid pRSVcat were used to assess processing of different DNA lesions. With ultraviolet-irradiated plasmids, no significant differences were found, indicating a normal (nucleotide excision) repair of DNA photoproducts. With singlet oxygen-treated plasmid, the fotemustine…
Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4+CD25+FoxP3+ regulatory T cells activa…
2020
Rationale: Loss of histone macroH2A1 induces appearance of cancer stem cells (CSCs)-like cells in hepatocellular carcinoma (HCC). How CSCs interact with the tumor microenvironment and the adaptive immune system is unclear. Methods: We screened aggressive human HCC for macroH2A1 and CD44 CSC marker expression. We also knocked down (KD) macroH2A1 in HCC cells, and performed integrated transcriptomic and secretomic analyses. Results: Human HCC showed low macroH2A1 and high CD44 expression compared to control tissues. MacroH2A1 KD CSC-like cells transferred paracrinally their chemoresistant properties to parental HCC cells. MacroH2A1 KD conditioned media transcriptionally reprogrammed parental …