Search results for "Chlorosilane"
showing 5 items of 5 documents
Slide electrification: charging of surfaces by moving water drops.
2019
We investigate the charge separation caused by the motion of a water drop across a hydrophobic, insulating solid surface. Although the phenomenon of liquid charging has been consistently reported, these reports are primarily observational, results are difficult to reproduce, and no quantitative theory has been developed. In this work, we address both the experimental and theoretical sides of this problem. We reproducibly measure the charge gained by water drops sliding down a substrate, and we outline an analytical theory to describe this charging process. As an experimental system, we choose water drops moving down an inclined plane of glass hydrophobized with perfluoro octadecyltrichloros…
Controlled Direct Synthesis of C-Mono- and C-Disubstituted Derivatives of [3,3′-Co(1,2-C2B9H11)2]− with Organosilane Groups: Theoretical Calculations…
2008
Mono- and dilithium salts of [3,3'-Co(1,2-C(2)B(9)H(11))(2)](-), (1(-)), react with different chlorosilanes (Me(2)SiHCl, Me(2)SiCl(2), Me(3)SiCl and MeSiHCl(2)) with an accurate control of the temperature to give a set of novel C(c)-mono- (C(c) = C(cluster)) and C(c)-disubstituted cobaltabis(dicarbollide) derivatives with silyl functions: [1-SiMe(2)H-3,3'-Co(1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))](-) (3(-)); [1,1'-mu-SiMe(2)-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (4(-)); [1,1'-mu-SiMeH-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (5(-)); [1-SiMe(3)-3,3'-Co(1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))](-) (6(-)) and [1,1'-(SiMe(3))(2)-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (7(-)). In a similar way, the [8,8'-mu-(1''…
Experimental Investigations and ab Initio Studies on Hexacoordinated Complexes of Dichlorosilane
1998
Dichlorosilane, SiH2Cl2, forms two different kinds of coordination compounds with pyridine and 3-picoline: the simple adduct trans-SiH2Cl2(L)2 and the ionic complex [SiH2(L)4]Cl2·4CHCl3 (L = pyridine, 3-picoline). The adducts trans-SiH2Cl2(py)2, 1, and trans-SiH2Cl2(3pic)2, 2, form directly from the reaction of bis(dichlorosilyl)methylamine, NMe(SiHCl2)2 with pyridine (py), and 3-picoline (3pic). Reaction of 1 with an excess of pyridine in chloroform yielded [SiH2(py)4]Cl2·4CHCl3, 3. The molecular and crystal structures of 1−3 were investigated by single-crystal X-ray diffraction. The Si atoms of all three compounds are hexacoordinated and lie on centers of inversion. The basic structural …
Challenges in the Electrochemical Synthesis of Si 2 Cl 6 Starting from Tetrachlorosilane and Trichlorosilane
2022
Non-degenerate 1,2-silyl shift in silyl substituted alkyltrimethylcyclopentadienes
2005
Abstract The five new silanes C5Me3RSiMenCl3 − n (n = 3, R = i-Pr (5); n = 2, R = i-Pr (6); n = 2, R = s-Bu (7); n = 2, R = cyclohexyl (8); and n = 3, R = t-Bu (9)) were synthesized by reaction of 1-alkyl-2,3,4-trimethylcyclopentadienyl lithium salts with appropriate chlorosilane and characterized by NMR, MS, and IR spectra. At elevated temperatures (250–360 K), all the silanes undergo a non-degenerate sigmatropic silyl rearrangement, which generates non-equivalent structures a and b. The presence of minor structure c was observed in compounds 5 and 7 only. The Diels–Alder cycloaddition of 5 with strong dienophiles tetracyanoethylene (TCNE), and dimethylacetylenedicarboxylate (DMAD) provide…