Search results for "Chromatin"

showing 10 items of 490 documents

Unique Epigenetic Features of Ribosomal RNA Genes (rDNA) in Early Diverging Plants (Bryophytes)

2019

Introduction: In plants, the multicopy genes encoding ribosomal RNA (rDNA) typically exhibit heterochromatic features and high level of DNA methylation. Here, we explored rDNA methylation in early diverging land plants from Bryophyta (15 species, 14 families) and Marchantiophyta (4 species, 4 families). DNA methylation was investigated by methylation-sensitive Southern blot hybridization in all species. We also carried out whole genomic bisulfite sequencing in Polytrichum formosum (Polytrichaceae) and Dicranum scoparium (Dicranaceae) and used available model plant methyloms (Physcomitrella patents and Marchantia polymorpha) to determine rDNA unit-wide methylation patterns. Chromatin structu…

0106 biological sciences0301 basic medicineHeterochromatinBisulfite sequencingrDNAPlant ScienceBiologygenome evolutionlcsh:Plant culture01 natural sciences03 medical and health sciencesMarchantia polymorphabryophyteslcsh:SB1-1110EpigeneticsOriginal Research2. Zero hungerGametophyteGeneticsepigeneticshistone markscytosine methylationMethylation15. Life on landRibosomal RNAbiology.organism_classification030104 developmental biologyDNA methylation010606 plant biology & botanyFrontiers in Plant Science
researchProduct

The Histone Marks Signature in Exonic and Intronic Regions Is Relevant in Early Response of Tomato Genes to Botrytis cinerea and in miRNA Regulation

2020

Research into the relationship between epigenetic regulation and resistance to biotic stresses provides alternatives for plant protection and crop improvement. To unravel the mechanisms underlying tomato responses to Botrytis cinerea, we performed a chromatin immunoprecipitation (ChIP) analysis showing the increase in H3K9ac mark along the early induced genes SlyDES, SlyDOX1, and SlyLoxD encoding oxylipin-pathway enzymes, and SlyWRKY75 coding for a transcriptional regulator of hormonal signaling. This histone mark showed a more distinct distribution than the previously studied H3K4me3. The RNAPol-ChIP analysis reflected the actual gene transcription associated with increased histone modific…

0106 biological sciences0301 basic medicinePseudomonas syringaeMiRNA bindingPlant ScienceBiology<i>pseudomonas syringae</i>01 natural sciencesTomato03 medical and health sciencesBotrytis cinerealcsh:BotanyTomàquetsTranscriptional regulationEpigeneticsGeneEcology Evolution Behavior and SystematicsBotrytis cinereamiRNAGeneticsEcologyHistone modificationsfungifood and beveragesFongs patògensbiology.organism_classificationChromatin immunoprecipitationlcsh:QK1-989030104 developmental biologyHistone<i>botrytis cinerea</i>biology.proteinRNAH3K4me3EpigeneticsChromatin immunoprecipitation010606 plant biology & botany
researchProduct

Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent manner

2001

Active oxygen species (AOS), especially hydrogen peroxide, play a critical role in the defence of plants against invading pathogens and in the hypersensitive response (HR). This is characterized by the induction of a massive production of AOS and the rapid appearance of necrotic lesions is considered as a programmed cell death (PCD) process during which a limited number of cells die at the site of infection. This work was aimed at investigating the mode of cell death observed in cultures of BY-2 tobacco cells exposed to H(2)O(2). It was shown that H(2)O(2) is able to induce various morphological cell death features in cultured tobacco BY-2 cells. The hallmarks of cell death observed with fl…

0106 biological sciencesHypersensitive responseTobacco BY-2 cellsProgrammed cell deathPhysiologyApoptosisPlant ScienceDNA FragmentationBiology01 natural sciences[SDV.BV.BOT] Life Sciences [q-bio]/Vegetal Biology/Botanics03 medical and health sciencesBotanyTobaccomedicineFragmentation (cell biology)Cell damageCells CulturedComputingMilieux_MISCELLANEOUS030304 developmental biologyCell Nucleus0303 health sciencesDose-Response Relationship DrugHydrogen Peroxide[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanicsmedicine.diseaseMolecular biologyChromatinPlants ToxicCell cultureApoptosisCULTURE DE CELLULESignal transduction010606 plant biology & botanySignal Transduction
researchProduct

Localization microscopy of DNA in situ using Vybrant(®) DyeCycle™ Violet fluorescent probe: A new approach to study nuclear nanostructure at single m…

2016

Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant(®) DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of …

0301 basic medicine02 engineering and technologyBiologyChromosomeslaw.inventionVybrant DyeCycle Violet03 medical and health sciencesDNA dyesHigher Order Chromatin StructureConfocal microscopylawphotoconversionMicroscopyChlorocebus aethiopsAnimalsdSTORMSMLMVero CellsFluorescent Dyeschromatin structureCell NucleusResolution (electron density)DNA replicationCell BiologyDNA021001 nanoscience & nanotechnologySingle Molecule ImagingFluorescenceSingle Molecule ImagingChromatinCell biologyNanostructures030104 developmental biologyDrosophila melanogasterMicroscopy FluorescenceBiophysics0210 nano-technologyExperimental cell research
researchProduct

Computational processing and quality control of Hi-C, capture Hi-C and capture-C data

2019

Hi-C, capture Hi-C (CHC) and Capture-C have contributed greatly to our present understanding of the three-dimensional organization of genomes in the context of transcriptional regulation by characterizing the roles of topological associated domains, enhancer promoter loops and other three-dimensional genomic interactions. The analysis is based on counts of chimeric read pairs that map to interacting regions of the genome. However, the processing and quality control presents a number of unique challenges. We review here the experimental and computational foundations and explain how the characteristics of restriction digests, sonication fragments and read pairs can be exploited to distinguish…

0301 basic medicine570lcsh:QH426-470media_common.quotation_subjectContext (language use)ReviewComputational biologyBiologyProcessingGenome576Capture Hi-C03 medical and health sciences0302 clinical medicineHi-CDatabases GeneticGeneticsTranscriptional regulationHumansQuality (business)EnhancerControl (linguistics)Genetics (clinical)media_commonGenomeChromosome MappingComputational BiologyHigh-Throughput Nucleotide SequencingQuality controlGenomicsChromatin004Chromatinlcsh:Genetics030104 developmental biology030220 oncology & carcinogenesis
researchProduct

Distinctive Histogenesis and Immunological Microenvironment Based on Transcriptional Profiles of Follicular Dendritic Cell Sarcomas

2017

Abstract Follicular dendritic cell (FDC) sarcomas are rare mesenchymal tumors with variable clinical, morphologic, and phenotypic characteristics. Transcriptome analysis was performed on multiple FDC sarcomas and compared with other mesenchymal tumors, microdissected Castleman FDCs, and normal fibroblasts. Using unsupervised analysis, FDC sarcomas clustered with microdissected FDCs, distinct from other mesenchymal tumors and fibroblasts. The specific endowment of FDC-related gene expression programs in FDC sarcomas emerged by applying a gene signature of differentially expressed genes (n = 1,289) between microdissected FDCs and fibroblasts. Supervised analysis comparing FDC sarcomas with mi…

0301 basic medicineAlgorithms; B7-H1 Antigen; Castleman Disease; Chromatin; Cluster Analysis; Dendritic Cell Sarcoma Follicular; Gene Expression Profiling; Gene Expression Regulation Neoplastic; Humans; Programmed Cell Death 1 Ligand 2 Protein; Programmed Cell Death 1 Receptor; Signal Transduction; T-Lymphocytes Helper-Inducer; T-Lymphocytes Regulatory; Up-Regulation; Gene Regulatory Networks; Molecular Biology; Oncology; Cancer ResearchCancer ResearchProgrammed Cell Death 1 ReceptorDendritic Cell Sarcoma FollicularBiologyT-Lymphocytes RegulatoryB7-H1 AntigenTranscriptome03 medical and health sciencesmedicineCluster AnalysisHumansGene Regulatory NetworksMolecular BiologyRegulation of gene expressionCluster AnalysiGene Regulatory NetworkFollicular dendritic cellsCastleman DiseaseGene Expression ProfilingMesenchymal stem cellT-Lymphocytes Helper-InducerProgrammed Cell Death 1 Ligand 2 Proteinmedicine.diseaseChromatinUp-RegulationAlgorithmGene Expression Regulation NeoplasticGene expression profiling030104 developmental biologyOncologyCancer researchImmunohistochemistrySarcomaAlgorithmsHumanSignal TransductionExtracellular matrix organizationMolecular Cancer Research
researchProduct

DNA Methylation and Potential for Epigenetic Regulation in Pygospio elegans.

2015

Transitions in developmental mode are common evolutionarily, but how and why they occur is not understood. Developmental mode describes larval phenotypes, including morphology, ecology and behavior of larvae, which typically are generalized across different species. The polychaete worm Pygospio elegans is one of few species polymorphic in developmental mode, with multiple larval phenotypes, providing a possibility to examine the potential mechanisms allowing transitions in developmental mode. We investigated the presence of DNA methylation in P. elegans, and, since maternal provisioning is a key factor determining eventual larval phenotype, we compared patterns of DNA methylation in females…

0301 basic medicineBiochemistryEpigenesis GeneticTranscriptomeLarvaeInvertebrate GenomicsGeneticsMultidisciplinaryDNA methylationNucleotidesOrganic CompoundsQRphenotypesMethylationGenomicsPhenotypeChromatinDNA-metylaatioNucleic acidsChemistryCpG siteepigenetiikkaDNA methylationPhysical SciencesMedicineFemaleEpigeneticsDNA modificationTranscriptome AnalysisChromatin modificationResearch ArticleChromosome biologyCell biologyScienceBiology03 medical and health sciencestoukatCytosineGeneticsAnimalsEpigeneticsGeneBiology and life sciencesMetamorphosista1184fungiOrganic ChemistryOrganismsChemical CompoundsComputational BiologyPolychaetaDNAGenome AnalysisInvertebrates030104 developmental biologyDifferentially methylated regionsPyrimidinesAnimal Genomicspolychaetesta1181CpG IslandsGene expressionDevelopmental BiologyPloS one
researchProduct

2019

Precise temporal and spatial regulation of gene expression in the brain is a prerequisite for cognitive processes such as learning and memory. Epigenetic mechanisms that modulate the chromatin structure have emerged as important regulators in this context. While posttranslational modification of histones or the modification of DNA bases have been examined in detail in many studies, the role of ATP-dependent chromatin remodeling factors (ChRFs) in learning- and memory-associated gene regulation has largely remained obscure. Here we present data that implicate the highly conserved chromatin assembly and remodeling factor Chd1 in memory formation and the control of immediate early gene (IEG) r…

0301 basic medicineBrain-derived neurotrophic factorRegulation of gene expressionbiologyChromatin Remodeling FactorChromatin remodelingChromatinCell biology03 medical and health sciencesCellular and Molecular Neuroscience030104 developmental biology0302 clinical medicineHistonebiology.proteinMolecular BiologyChromatin immunoprecipitationImmediate early gene030217 neurology & neurosurgeryFrontiers in Molecular Neuroscience
researchProduct

The NSL Chromatin-Modifying Complex Subunit KANSL2 Regulates Cancer Stem-like Properties in Glioblastoma That Contribute to Tumorigenesis.

2016

KANSL2 is an integral subunit of the nonspecific lethal (NSL) chromatin-modifying complex that contributes to epigenetic programs in embryonic stem cells. In this study, we report a role for KANSL2 in regulation of stemness in glioblastoma (GBM), which is characterized by heterogeneous tumor stem-like cells associated with therapy resistance and disease relapse. KANSL2 expression is upregulated in cancer cells, mainly at perivascular regions of tumors. RNAi-mediated silencing of KANSL2 in GBM cells impairs their tumorigenic capacity in mouse xenograft models. In clinical specimens, we found that expression levels of KANSL2 correlate with stemness markers in GBM stem-like cell populations. M…

0301 basic medicineCHROMATINMaleCancer ResearchCarcinogenesisCellCell SeparationMice SCIDmedicine.disease_causeMiceCANCER STEM CELLMice Inbred NODHistone AcetyltransferasesOligonucleotide Array Sequence AnalysisBrain NeoplasmsNuclear ProteinsMiddle AgedFlow CytometryImmunohistochemistryChromatinUp-Regulationmedicine.anatomical_structureOncologyGene Knockdown TechniquesNeoplastic Stem CellsHeterograftsFemaleCIENCIAS NATURALES Y EXACTASAdultKANSLOtras Ciencias BiológicasBlotting WesternGLIOBLASTOMABiologyReal-Time Polymerase Chain ReactionArticleCiencias Biológicas03 medical and health sciencesCancer stem cellmedicineBiomarkers TumorGene silencingAnimalsHumansEpigeneticsAgedEmbryonic stem cell030104 developmental biologyCancer cellImmunologyCancer researchCarcinogenesisGlioblastomaCancer research
researchProduct

Nut1/Hos1 and Sas2/Rpd3 control the H3 acetylation of two different sets of osmotic stress-induced genes

2019

Epigenetic information is able to interact with the cellular environment and could be especially useful for reprograming gene expression in response to a physiological perturbation. In fact the genes induced or repressed by osmotic stress undergo significant changes in terms of the levels of various histone modifications, especially in the acetylation levels of histone H3. Exposing yeast to high osmolarity results in the activation of stress-activated protein kinase Hog1, which plays a central role in gene expression control. We evaluated the connection between the presence of Hog1 and changes in histone H3 acetylation in stress-regulated genes. We found a parallel increase in the acetylati…

0301 basic medicineCancer ResearchSaccharomyces cerevisiae Proteinschip-on-chipSaccharomyces cerevisiaeEpigenesis GeneticHistones03 medical and health sciencesHistone H30302 clinical medicineOsmotic PressureGene Expression Regulation FungalGene expressionEpigeneticsHistone H3 acetylationMolecular BiologyHistone AcetyltransferasesRegulation of gene expressionMediator ComplexbiologyepigeneticsAcetylationCell biologyChromatinDNA-Binding ProteinsHistone Code030104 developmental biologyHistoneHistone acetylationAcetylation030220 oncology & carcinogenesisbiology.proteinchromatinhog1osmotic stressMitogen-Activated Protein Kinasesgene regulationProtein Processing Post-TranslationalTranscription FactorsResearch Paper
researchProduct