Search results for "Chromatin Immunoprecipitation"

showing 10 items of 87 documents

Convergence of Wnt signaling on the HNF4alpha-driven transcription in controlling liver zonation.

2009

Background & Aims: In each hepatocyte, the specific repertoire of gene expression is influenced by its exact location along the portocentrovenular axis of the hepatic lobule and provides a reason for the liver functions compartmentalization defined "metabolic zonation." So far, few molecular players controlling genetic programs of periportal (PP) and perivenular (PV) hepatocytes have been identified; the elucidation of zonation mechanisms remains a challenge for experimental hepatology. Recently, a key role in induction and maintenance of the hepatocyte heterogeneity has been ascribed to Wnt/β-catenin pathway. We sought to clarify how this wide-ranging stimulus integrates with hepatocyte s…

Beta-cateninWnt ProteinCellular differentiationBlotting WesternLiver Stem CellFluorescent Antibody TechniqueMice TransgenicBiologyTransfectionSensitivity and SpecificityAnimals; Blotting Western; Cell Differentiation; Cell Proliferation; Cells Cultured; Fluorescent Antibody Technique; Hepatocyte Nuclear Factor 4; Hepatocytes; Humans; Immunoprecipitation; Mice; Mice Knockout; Mice Transgenic; Reverse Transcriptase Polymerase Chain Reaction; Sensitivity and Specificity; Signal Transduction; Transfection; Wnt Proteins; beta Catenin; GastroenterologyMiceliver zonation; wnt signalling; beta catenin; hnf4Gene expressionmedicineAnimalsHumansImmunoprecipitationHepatocyteCells Culturedbeta CateninCell ProliferationMice KnockoutHepatologyAnimalReverse Transcriptase Polymerase Chain ReactionGastroenterologyWnt signaling pathwayCell DifferentiationMolecular biologyWnt Proteinsmedicine.anatomical_structureHepatocyte nuclear factor 4Hepatocyte Nuclear Factor 4Hepatocytebiology.proteinHepatocytesChromatin immunoprecipitationHumanSignal TransductionGastroenterology
researchProduct

CTCF and BORIS Regulate Rb2/p130 Gene Transcription: A Novel Mechanism and a New Paradigm for Understanding the Biology of Lung Cancer

2011

Abstract Although innumerable investigations regarding the biology of lung cancer have been carried out, many aspects thereof remain to be addressed, including the role played by the retinoblastoma-related protein Rb2/p130 during the evolution of this disease. Here we report novel findings on the mechanisms that control Rb2/p130 gene expression in lung fibroblasts and characterize the effects of Rb2/p130 deregulation on the proliferative features of lung cancer cells. We revealed for the first time that in lung fibroblasts the expression of Rb2/p130 gene is directly controlled by the chromatin insulator CCCTC-binding factor, CTCF, which by binding to the Rb2/p130 gene promoter induces, and/…

CCCTC-Binding FactorChromatin ImmunoprecipitationCancer ResearchLung NeoplasmsTranscription GeneticSettore MED/06 - Oncologia MedicaBiologyInsulator (genetics)Open Reading FramesTranscription (biology)Carcinoma Non-Small-Cell LungCell Line TumorGene expressionmedicineHumansCarcinoma Small CellPromoter Regions GeneticLung cancerChromosome PositioningMolecular BiologyGeneBinding SitesRetinoblastoma-Like Protein p130PromoterFibroblastsmedicine.diseaseChromatinDNA-Binding ProteinsGene Expression Regulation NeoplasticRepressor ProteinsGene transcriptionOncologyCTCFembryonic structuresCancer researchLung cancerLung cancer; Gene transcriptionbiological phenomena cell phenomena and immunityProtein BindingMolecular Cancer Research
researchProduct

7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs.

2019

Abstract Background Knowledge of the three-dimensional structure of the genome is necessary to understand how gene expression is regulated. Recent experimental techniques such as Hi-C or ChIA-PET measure long-range chromatin interactions genome-wide but are experimentally elaborate, have limited resolution and such data is only available for a limited number of cell types and tissues. Results While ChIP-seq was not designed to detect chromatin interactions, the formaldehyde treatment in the ChIP-seq protocol cross-links proteins with each other and with DNA. Consequently, also regions that are not directly bound by the targeted TF but interact with the binding site via chromatin looping are…

CCCTC-Binding Factorlcsh:QH426-470Protein Conformationlcsh:Biotechnologygenetic processesComputational biologyBiologyGenomeChromosomesBioconductorChromosome conformation capture03 medical and health sciences0302 clinical medicine6CHi-Clcsh:TP248.13-248.65GeneticsTranscription factorsHumansnatural sciencesNucleotide Motifs4CChIA-PET030304 developmental biologyChromatin loops0303 health sciencesThree-dimensional genome architectureChromatinChromatinChIP-seq7Clcsh:Genetics5CCTCFChromatin Immunoprecipitation SequencingHuman genomeDNA microarrayChIA-PET3CPrediction030217 neurology & neurosurgeryChromatin interactionsBiotechnologyHeLa CellsResearch ArticleBMC genomics
researchProduct

Negative transcriptional control of ERBB2 gene by MBP-1 and HDAC1: diagnostic implications in breast cancer

2013

Abstract Background The human ERBB2 gene is frequently amplified in breast tumors, and its high expression is associated with poor prognosis. We previously reported a significant inverse correlation between Myc promoter-binding protein-1 (MBP-1) and ERBB2 expression in primary breast invasive ductal carcinoma (IDC). MBP-1 is a transcriptional repressor of the c-MYC gene that acts by binding to the P2 promoter; only one other direct target of MBP-1, the COX2 gene, has been identified so far. Methods To gain new insights into the functional relationship linking MBP-1 and ERBB2 in breast cancer, we have investigated the effects of MBP-1 expression on endogenous ERBB2 transcript and protein lev…

Cancer ResearchMBP-1/EnolaseReceptor ErbB-2Breast NeoplasmsHistone Deacetylase 1BiologyERBB geneBreast cancerTranscriptional regulationTranscription (biology)Histone DeacetylaseBreast CancermedicineTranscriptional regulationBiomarkers TumorTumor Cells CulturedGeneticsHumansMBP-1ERBB2Promoter Regions Geneticskin and connective tissue diseasesGeneReporter geneCarcinoma Ductal BreastCancerTransfectionGenes erbB-2medicine.diseaseImmunohistochemistryHDAC1Neoplasm ProteinsDNA-Binding ProteinsGene Expression Regulation NeoplasticSettore BIO/18 - GeneticaOncologyCancer researchChromatin immunoprecipitationResearch ArticleBMC Cancer
researchProduct

Computational identification of cell-specific variable regions in ChIP-seq data.

2019

ABSTRACT Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is used to identify genome-wide DNA regions bound by proteins. Several sources of variation can affect the reproducibility of a particular ChIP-seq assay, which can lead to a misinterpretation of where the protein under investigation binds to the genome in a particular cell type. Given one ChIP-seq experiment with replicates, binding sites not observed in all the replicates will usually be interpreted as noise and discarded. However, the recent discovery of high-occupancy target (HOT) regions suggests that there are regions where binding of multiple transcription factors can be identified. To investigate these regions,…

Cell typeAcademicSubjects/SCI00010Computational biologyPlasma protein bindingBiologyGenomeCell LineEvolution Molecular03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineNarese/3Cell Line TumorGeneticsAnimalsHumansEpigeneticsBinding sitePromoter Regions GeneticTranscription factorEmbryonic Stem Cells030304 developmental biology0303 health sciencesPrincipal Component AnalysisBinding SitesNucleotidesGenetic VariationPromoterGenomicsChromatinchemistryCpG siteMCF-7 CellsChromatin Immunoprecipitation SequencingMethods OnlineR-Loop StructuresK562 CellsChromatin immunoprecipitation030217 neurology & neurosurgeryFunction (biology)DNATranscription FactorsNucleic acids research
researchProduct

cis-Regulatory sequences driving the expression of the Hbox12 homeobox-containing gene in the presumptive aboral ectoderm territory of the Paracentro…

2008

AbstractEmbryonic development is coordinated by networks of evolutionary conserved regulatory genes encoding transcription factors and components of cell signalling pathways. In the sea urchin embryo, a number of genes encoding transcription factors display territorial restricted expression. Among these, the zygotic Hbox12 homeobox gene is transiently transcribed in a limited number of cells of the animal-lateral half of the early Paracentrotus lividus embryo, whose descendants will constitute part of the ectoderm territory. To obtain insights on the regulation of Hbox12 expression, we have explored the cis-regulatory apparatus of the gene. In this paper, we show that the intergenic region …

Chromatin ImmunoPrecipitationDNA ComplementaryEmbryo Nonmammaliananimal structuresGreen Fluorescent ProteinsMolecular Sequence DataSettore BIO/11 - Biologia MolecolareEctodermHomeodomainMybBiologyOtxEctoderm specificationHomeobox cis-regulatory elements GFP sea urchinEctodermmedicineAnimalsRegulatory Elements TranscriptionalAboral ectodermSea urchin embryoMolecular BiologyGene transferDNA PrimersRegulator geneCis-regulatory moduleHomeodomain ProteinsGeneticsBase SequenceEmbryogenesisGene Expression Regulation DevelopmentalCell Biologycis-Regulatory moduleGastrulationmedicine.anatomical_structureMutagenesisRegulatory sequenceSea Urchinsembryonic structuresSoxHomeoboxSequence AlignmentDevelopmental BiologyDevelopmental Biology
researchProduct

Dependence on nuclear factor of activated T-cells (NFAT) levels discriminates conventional T cells from Foxp3 + regulatory T cells

2012

Several lines of evidence suggest nuclear factor of activated T-cells (NFAT) to control regulatory T cells: thymus-derived naturally occurring regulatory T cells (nTreg) depend on calcium signals, the Foxp3 gene harbors several NFAT binding sites, and the Foxp3 (Fork head box P3) protein interacts with NFAT. Therefore, we investigated the impact of NFAT on Foxp3 expression. Indeed, the generation of peripherally induced Treg (iTreg) by TGF-β was highly dependent on NFAT expression because the ability of CD4 + T cells to differentiate into iTreg diminished markedly with the number of NFAT family members missing. It can be concluded that the expression of Foxp3 in TGF-β–induced iTreg depends…

Chromatin ImmunoprecipitationAdoptive cell transferT-LymphocytesImmunoblottingFluorescent Antibody TechniqueLymphocyte ActivationT-Lymphocytes RegulatoryAutoimmune DiseasesProinflammatory cytokineMiceTransforming Growth Factor betaAnimalsHumansHomeodomain ProteinsMultidisciplinaryNFATC Transcription FactorsbiologyFOXP3Forkhead Transcription FactorsNFATTransforming growth factor betaBiological SciencesColitisFlow CytometryNFATC Transcription FactorsAdoptive TransferMolecular biologyCell biologyTransplantationCyclosporinebiology.proteinChromatin immunoprecipitationProceedings of the National Academy of Sciences
researchProduct

EphrinB2 controls vessel pruning through STAT1-JNK3 signalling

2014

Angiogenesis produces primitive vascular networks that need pruning to yield hierarchically organized and functional vessels. Despite the critical importance of vessel pruning to vessel patterning and function, the mechanisms regulating this process are not clear. Here we show that EphrinB2, a well-known player in angiogenesis, is an essential regulator of endothelial cell death and vessel pruning. This regulation depends upon phosphotyrosine-EphrinB2 signalling repressing c-jun N-terminal kinase 3 activity via STAT1. JNK3 activation causes endothelial cell death. In the absence of JNK3, hyaloid vessel physiological pruning is impaired, associated with abnormal persistence of hyaloid vessel…

Chromatin ImmunoprecipitationCell SurvivalAngiogenesisImmunoblottingRegulatorFluorescent Antibody TechniqueNeovascularization PhysiologicGeneral Physics and AstronomyEphrin-B2Persistent Hyperplastic Primary VitreousIn Vitro TechniquesBiologyBioinformaticsMicrophthalmiaArticleGeneral Biochemistry Genetics and Molecular BiologyNeovascularizationMiceMitogen-Activated Protein Kinase 10Human Umbilical Vein Endothelial CellsmedicineAnimalsHumansImmunoprecipitationInvolution (medicine)Pruning (decision trees)Cell ProliferationMice KnockoutMultidisciplinaryNeovascularization PathologicfungiEndothelial CellsRetinal VesselsGeneral ChemistryFlow Cytometrymedicine.diseaseCell biologyEndothelial stem cellSTAT1 Transcription Factornervous systemPersistent hyperplastic primary vitreousGene Knockdown Techniquescardiovascular systemmedicine.symptomSignal TransductionNature Communications
researchProduct

TFIIH Operates through an Expanded Proximal Promoter To Fine-Tune c-myc Expression

2004

A continuous stream of activating and repressing signals is processed by the transcription complex paused at the promoter of the c-myc proto-oncogene. The general transcription factor IIH (TFIIH) is held at promoters prior to promoter escape and so is well situated to channel the input of activators and repressors to modulate c-myc expression. We have compared cells expressing only a mutated p89 (xeroderma pigmentosum complementation group B [XPB]), the largest TFIIH subunit, with the same cells functionally complemented with the wild-type protein (XPB/wt-p89). Here, we show structural, compositional, and functional differences in transcription complexes between XPB and XPB/wt-89 cells at t…

Chromatin ImmunoprecipitationDNA ComplementaryCell SurvivalUltraviolet RaysBlotting WesternGreen Fluorescent ProteinsGene ExpressionRepressorCellular homeostasisBiologyTransfectionModels BiologicalProto-Oncogene MasProto-Oncogene Proteins c-mycTranscription Factors TFIIRibonucleasesPotassium PermanganateTranscription (biology)HumansRNA MessengerPromoter Regions GeneticMolecular BiologyModels GeneticGeneral transcription factorCell CycleGenetic Complementation TestDNA HelicasesPromoterCell BiologyFibroblastsFlow CytometryMolecular biologyDNA-Binding ProteinsKineticsTranscription Factor TFIIHMicroscopy FluorescenceMutationTranscription preinitiation complexTranscription factor II HTranscription Factor TFIIHPlasmidsMolecular and Cellular Biology
researchProduct

Chromatin dynamics of the developmentally regulated P. lividus neural alpha tubulin gene

2011

Over 40 years ago, Allfrey and colleagues (1964) suggested that two histone modifications, namely acetylation and methylation, might regulate RNA synthesis. Nowadays it is universally accepted that activation of gene expression strictly depends on enzymatic mechanisms able to dynamically modify chromatin structure. Here, using techniques including DNaseI hypersensitive site analysis, chomatin immunoprecipitation and quantitative PCR analysis, we have analyzed the dynamics of histone post-translation modifications involved in developmentally/spatially controlled activation of the sea urchin PlTalpha2 tubulin gene. We have demonstrated that only when the PlTalpha2 core promoter chromatin is a…

Chromatin ImmunoprecipitationEmbryologyRNA polymerase IISettore BIO/11 - Biologia MolecolareMethylationNervous SystemHistone DeacetylasesHistonesTubulinGene expressionAnimalsParacentrotus lividus chromatin modification epigenetic reprogramming nervous systemPromoter Regions GeneticHistone AcetyltransferasesEpigenomicsHistone DemethylasesbiologyGene Expression Regulation DevelopmentalAcetylationPromoterHistone-Lysine N-MethyltransferaseMolecular biologyChromatinChromatinCell biologyHistoneAcetylationHistone MethyltransferasesParacentrotusbiology.proteinRNA Polymerase IIProtein Processing Post-TranslationalHypersensitive siteDevelopmental Biology
researchProduct