Search results for "Classical limit"

showing 10 items of 28 documents

The Classical Theory of Real Functions

1998

The first class of real functions we deal with in this chapter is the class of functions of locally finite variation. These functions are closely related to the real measures on B. Exploiting this connection would allow us to obtain the properties of these functions from the general results in Chapter 4. But the path we follow here is a more direct one which applies the theory of vector lattices. The link with the measures on B will be established in the next section.

AlgebraClass (set theory)Real analysisComputer scienceSimple functionPath (graph theory)Link (knot theory)Classical limitFirst classConnection (mathematics)
researchProduct

Statistical Mechanics of the sine-Gorden Field: Part II

1985

From the work of the Part I we are now in a position to address ourselves to the main problem posed in these lectures — the evaluation of Z, (1.11), for the s-G field after canonical transformation to the action-angle variables (4.27).

AlgebraPoisson bracketField (physics)Position (vector)Canonical transformationStatistical mechanicsSineClassical limitMathematics
researchProduct

Statistical Mechanics of the Integrable Models

1987

There is an infinity of classically integrable models. The only ones we can consider here, and these only briefly, are: the sine-Gordon (s-G) model $${\phi _{{\rm{xx}}}}{}^ - {\phi _{{\rm{tt}}}} = {{\rm{m}}^2}\sin \phi ,$$ (1.1) the sinh-Gordon (sinh-G) model $${\phi _{{\rm{xx}}}}{}^ - {\phi _{{\rm{tt}}}} = {{\rm{m}}^2}\sinh \phi ,$$ (1.2) and the repulsive and attractive non-linear Schrodinger (NLS) models $${}^ - {\rm{i}}{\phi _{\rm{t}}} = {\phi _{{\rm{xx}}}}{}^ - 2{\rm{c}}\phi {\left| \phi \right|^2}.$$ (1.3) The “attractive” NLS has real coupling constant c 0; φ is complex. In (1.1) and (1.2) m is a mass (ħ = c = 1) and φ is real. These 4 integrable models are in one space and one time …

Coupling constantPhysicsNonlinear Sciences::Exactly Solvable and Integrable SystemsIntegrable systemmedia_common.quotation_subjectStatistical mechanicsQuantum statistical mechanicsInfinitySpace (mathematics)Classical limitmedia_commonMathematical physics
researchProduct

Modeling Round Robin Test: An Uncoupled Approach

2014

Abstract The solution of the modeling test presented in the paper is based on an uncoupled hydro-mechanical approach. Firstly, the controlled infiltration process is modeled by a finite element transient groundwater seepage software. Afterwards, calculated pore water pressures at successive instants are used for the slope stability analysis. Time evolution of the slope stability is analysed by using the infinite slope model, according to the classical limit equilibrium method.

EngineeringSettore ICAR/07 - Geotecnicainfinite slopebusiness.industryTime evolutionEarth and Planetary Sciences(all)FEM seepage analysisGeneral MedicineMechanicsClassical limitFinite element methodPhysics::GeophysicsMELPore water pressureInfiltration (hydrology)FEM seepage analysiinfinite slope.Slope stabilityGeotechnical engineeringRound robin testbusinessSlope stability analysisunsaturated soilProcedia Earth and Planetary Science
researchProduct

Classical and Quantum Annealing in the Median of Three Satisfiability

2011

We determine the classical and quantum complexities of a specific ensemble of three-satisfiability problems with a unique satisfying assignment for up to N = 100 and 80 variables, respectively. In the classical limit, we employ generalized ensemble techniques and measure the time that a Markovian Monte Carlo process spends in searching classical ground states. In the quantum limit, we determine the maximum finite correlation length along a quantum adiabatic trajectory determined by the linear sweep of the adiabatic control parameter in the Hamiltonian composed of the problem Hamiltonian and the constant transverse field Hamiltonian. In the median of our ensemble, both complexities diverge e…

FOS: Computer and information sciencesPolynomialComputational complexity theoryQuantum dynamicsFOS: Physical sciencesComputational Complexity (cs.CC)Classical limitClassical capacityQuantum mechanicsddc:530Statistical physicsALGORITHMAmplitude damping channelQuantumQuantum fluctuationCondensed Matter - Statistical MechanicsMathematicsPhysicsQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Stochastic processQuantum annealingAdiabatic quantum computationAtomic and Molecular Physics and OpticsSatisfiabilityJComputer Science - Computational ComplexityComputerSystemsOrganization_MISCELLANEOUSQuantum algorithmPHASE-TRANSITIONSQuantum dissipationQuantum Physics (quant-ph)
researchProduct

On the physical contents of q-deformed Minkowski spaces

1994

Some physical aspects of $q$-deformed spacetimes are discussed. It is pointed out that, under certain standard assumptions relating deformation and quantization, the classical limit (Poisson bracket description) of the dynamics is bound to contain unusual features. At the same time, it is argued that the formulation of an associated $q$-deformed field theory is fraught with serious difficulties.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsTheoretical physicsQuantization (physics)Poisson bracketHigh Energy Physics - Theory (hep-th)Minkowski spaceFOS: Physical sciencesClassical limitPhysics Letters B
researchProduct

On the semiclassical limit of the defocusing Davey-Stewartson II equation

2018

Inverse scattering is the most powerful tool in theory of integrable systems. Starting in the late sixties resounding great progress was made in (1+1) dimensional problems with many break-through results as on soliton interactions. Naturally the attention in recent years turns towards higher dimensional problems as the Davey-Stewartson equations, an integrable generalisation of the (1+1)-dimensionalcubic nonlinear Schrödinger equation. The defocusing Davey-Stewartson II equation, in its semi-classical limit has been shown in numerical experiments to exhibit behavior that qualitatively resembles that of its one-dimensional reduction, namely the generation of a dispersive shock wave: smooth i…

Inverse problemsLimite semiclassique[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA][MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Semiclassical limitProblèmes inversesD-Bar problemsDavey-Stewartson equations[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Équations de Davey-Stewartson[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph][MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]Problèmes D-Bar
researchProduct

Silence of Binary Kerr Black Holes

2020

A nontrivial S matrix generally implies a production of entanglement: starting with an incoming pure state, the scattering generally returns an outgoing state with nonvanishing entanglement entropy. It is then interesting to ask if there exists a nontrivial S matrix that generates no entanglement. In this Letter, we argue that the answer is the S-matrix for the scattering of classical black holes. We study the spin entanglement in the scattering of arbitrary spinning particles. Augmenting the S-matrix with Thomas–Wigner rotation factors, we derive the entanglement entropy from the gravitational induced 2→2 amplitude. In the Eikonal limit, we find that the relative entanglement entropy, defi…

Minimal couplingBlack holePhysicsRotating black holeQuantum mechanicsWigner rotationGeneral Physics and AstronomyQuantum entanglementQuantum PhysicsMultipole expansionClassical limitS-matrixPhysical Review Letters
researchProduct

Quantum and Classical Statistical Mechanics of the Integrable Models in 1 + 1 Dimensions

1990

In a short but remarkable paper Yang and Yang [1] showed that the free energy of a model system consisting of N bosons on a line with repulsive δ-function interactions was given by a set of coupled integral equations. The Yangs’ chosen model is in fact the repulsive version of the quantum Nonlinear Schrodinger (NLS) model. We have shown that with appropriate extensions and different dispersion relations and phase shifts similar formulae apply to ‘all’ of the integrable models quantum or classical. These models include the sine-Gordon (s-G) and sinh-Gordon (sinh-G) models, the two NLS models (attractive and repulsive), the Landau-Lifshitz (L-L’) model which includes all four previous models,…

Nonlinear Sciences::Exactly Solvable and Integrable SystemsMethod of quantum characteristicsStatistical mechanicsQuantum inverse scattering methodToda latticeQuantum statistical mechanicsClassical limitQuantum chaosMathematical physicsMathematicsBethe ansatz
researchProduct

Quantum corrections to inflation: the importance of RG-running and choosing the optimal RG-scale

2017

We demonstrate the importance of correctly implementing RG running and choosing the RG scale when calculating quantum corrections to inflaton dynamics. We show that such corrections are negligible for single-field inflation, in the sense of not altering the viable region in the ${n}_{s}\ensuremath{-}r$ plane, when imposing Planck constraints on ${A}_{s}$. Surprisingly, this also applies, in a nontrivial way, for an inflaton coupled to additional spectator degrees of freedom. The result relies on choosing the renormalization scale (pseudo-)optimally, thereby avoiding unphysical large logarithmic corrections to the Friedmann equations and large running of the couplings. We find that the viabl…

Physics beyond the Standard ModelScalar (mathematics)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesClassical limitRenormalizationsymbols.namesakeGeneral Relativity and Quantum Cosmologyquantum correctionsHigh Energy Physics - Phenomenology (hep-ph)Quantum mechanics0103 physical sciences010306 general physicsQuantumMathematical physicsPhysicsta114010308 nuclear & particles physicsFriedmann equationsInflatonRenormalization groupinflatonHigh Energy Physics - Phenomenologysymbols
researchProduct