Search results for "Climate Action"

showing 10 items of 2410 documents

Alteration-Induced Volcano Instability at La Soufrière de Guadeloupe (Eastern Caribbean)

2021

International audience; Volcanoes are unstable structures that deform laterally and frequently experience mass wasting events. Hydrothermal alteration is often invoked as a mechanism that contributes significantly to volcano instability. We present a study that combines laboratory experiments, geophysical data, and large-scale numerical modeling to better understand the influence of alteration on volcano stability, using La Soufrière de Guadeloupe (Eastern Caribbean) as a case study. Laboratory experiments on variably altered (advanced argillic alteration) blocks show that uniaxial compressive strength, Young's modulus, and cohesion decrease as a function of increasing alteration, but that …

upscalingVolcanic hazards010504 meteorology & atmospheric sciencesYoung's modulusMass wasting010502 geochemistry & geophysics01 natural sciencesInstabilityHydrothermal circulationGeochemistry and PetrologyFriction angleEarth and Planetary Sciences (miscellaneous)Cohesion (geology)[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/VolcanologyArgillic alterationPetrologyhydrothermal alterationuniaxial compressive strength0105 earth and related environmental sciencesflank collapsegeographygeography.geographical_feature_categoryGeophysicsVolcano13. Climate actionSpace and Planetary ScienceGeology
researchProduct

On Line Validation Exercise (OLIVE): A Web Based Service for the Validation of Medium Resolution Land Products. Application to FAPAR Products

2014

International audience; The OLIVE (On Line Interactive Validation Exercise) platform is dedicated to the validation of global biophysical products such as LAI (Leaf Area Index) and FAPAR (Fraction of Absorbed Photosynthetically Active Radiation). It was developed under the framework of the CEOS (Committee on Earth Observation Satellites) Land Product Validation (LPV) sub-group. OLIVE has three main objectives: (i) to provide a consistent and centralized information on the definition of the biophysical variables, as well as a description of the main available products and their performances (ii) to provide transparency and traceability by an online validation procedure compliant with the CEO…

validation;LAI;FAPAR;intercomparison;product;CEOSService (systems architecture)Earth observationTraceabilityComputer scienceScienceintercomparison10127 Institute of Evolutionary Biology and Environmental StudiesDocumentationBenchmark (surveying)Web applicationproductFAPARComputingMilieux_MISCELLANEOUSRemote sensingvalidationbusiness.industryQ1900 General Earth and Planetary SciencesLAI13. Climate action[SDE]Environmental Sciences570 Life sciences; biology590 Animals (Zoology)General Earth and Planetary SciencesbusinessHost (network)Quality assuranceCEOSRemote Sensing
researchProduct

Inferring Phytoplankton, Terrestrial Plant and Bacteria Bulk δ¹³C Values from Compound Specific Analyses of Lipids and Fatty Acids.

2015

Stable isotope mixing models in aquatic ecology require δ13C values for food web end members such as phytoplankton and bacteria, however it is rarely possible to measure these directly. Hence there is a critical need for improved methods for estimating the δ13C ratios of phytoplankton, bacteria and terrestrial detritus from within mixed seston. We determined the δ13C values of lipids, phospholipids and biomarker fatty acids and used these to calculate isotopic differences compared to the whole-cell δ13C values for eight phytoplankton classes, five bacterial taxa, and three types of terrestrial organic matter (two trees and one grass). The lipid content was higher amongst the phytoplankton (…

ved/biology.organism_classification_rank.speciesta1172lcsh:MedicineAlgaeaquatic ecologyterrestrial plantsPhytoplanktonTerrestrial plantBotanyMetabolomics14. Life underwaterBiomasslcsh:Sciencevesiekologia2. Zero hungerBiomass (ecology)Carbon IsotopesMultidisciplinaryDetritusbiologyδ13CBacteriaved/biologyStable isotope ratioSestonFatty Acidsfungilcsh:R15. Life on landbiology.organism_classificationLipidsbacteria bulk13. Climate actionEnvironmental chemistryPhytoplanktonphytoplanktonta1181lcsh:QBiomarkersResearch ArticlePLoS ONE
researchProduct

A model of degassing for Stromboli volcano

2010

International audience; A better understanding of degassing processes at open-vent basaltic volcanoes requires collection of new datasets of H2O–CO2–SO2 volcanic gas plume compositions, which acquisition has long been hampered by technical limitations. Here, we use the MultiGAS technique to provide the best-documented record of gas plume discharges from Stromboli volcano to date. We show that Stromboli's gases are dominated by H2O (48–98 mol%; mean, 80%), and by CO2 (2–50 mol%; mean, 17%) and SO2 (0.2–14 mol%; mean, 3%). The significant temporal variability in our dataset reflects the dynamic nature of degassing process during Strombolian activity; which we explore by interpreting our gas m…

volcanic gase010504 meteorology & atmospheric sciencesEarth science010502 geochemistry & geophysics01 natural sciencesVolcanic Gasesvolcanic degassing; Stromboli; volcanic gases; CO2 fluxingGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)eventStromboliPetrology0105 earth and related environmental sciencesBasaltevent.disaster_typegeographygeography.geographical_feature_categoryStrombolian eruptionSettore GEO/08 - Geochimica E VulcanologiaPlumeGeophysicsVolcanovolcanic gases13. Climate actionSpace and Planetary ScienceMagmaCO2 fluxingInclusion (mineral)[SDU.OTHER]Sciences of the Universe [physics]/OtherSaturation (chemistry)volcanic degassingGeologyEarth and Planetary Science Letters
researchProduct

Volcanic Plume CO2 Flux Measurements at Mount Etna by Mobile Differential Absorption Lidar

2017

Volcanic eruptions are often preceded by precursory increases in the volcanic carbon dioxide (CO2) flux. Unfortunately, the traditional techniques used to measure volcanic CO2 require near-vent, in situ plume measurements that are potentially hazardous for operators and expose instruments to extreme conditions. To overcome these limitations, the project BRIDGE (BRIDging the gap between Gas Emissions and geophysical observations at active volcanoes) received funding from the European Research Council, with the objective to develop a new generation of volcanic gas sensing instruments, including a novel DIAL-Lidar (Differential Absorption Light Detection and Ranging) for remote (e.g., distal) …

volcanic plumes010504 meteorology & atmospheric sciencesFlux010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesVolcanic plumeVolcanic CO2 fluxImpact craterDifferential Absorption Lidar (DIAL);Remote sensing;Volcanic CO2 flux;Volcanic plumesGas compositionDifferential Absorption Lidar (DIAL)0105 earth and related environmental sciencesRemote sensinggeographygeography.geographical_feature_categoryvolcanic plumes; volcanic CO<sub>2</sub> flux; remote sensing; Differential Absorption Lidar (DIAL)lcsh:QE1-996.5ElevationRemote sensingPlumelcsh:GeologyLidarVolcanoVolcanic plume13. Climate actionGeneral Earth and Planetary SciencesEarth and Planetary Sciences (all)GeologyGeosciences; Volume 7; Issue 1; Pages: 9
researchProduct

Ultraviolet imaging of volcanic plumes: A new paradigm in volcanology

2017

Ultraviolet imaging has been applied in volcanology over the last ten years or so. This provides considerably higher temporal and spatial resolution volcanic gas emission rate data than available previously, enabling the volcanology community to investigate a range of far faster plume degassing processes than achievable hitherto. To date, this has covered rapid oscillations in passive degassing through conduits and lava lakes, as well as puffing and explosions, facilitating exciting connections to be made for the first time between previously rather separate sub-disciplines of volcanology. Firstly, there has been corroboration between geophysical and degassing datasets at ≈1 Hz, expeditin…

volcanic plumes010504 meteorology & atmospheric sciencesLavaEarth scienceFlow (psychology)010502 geochemistry & geophysicsmedicine.disease_cause01 natural sciencesVolcanic plumeInterdisciplinary volcanology; Ultraviolet cameras; Volcanic plumes; Earth and Planetary Sciences (all)medicineinterdisciplinary volcanology0105 earth and related environmental sciencesgeographygeography.geographical_feature_categoryultraviolet cameraslcsh:QE1-996.5Gas releaseVolcanologyGeophysicsPlumelcsh:GeologyDynamic modelsVolcano13. Climate actionGeneral Earth and Planetary SciencesEarth and Planetary Sciences (all)GeologyUltravioletUltraviolet camera
researchProduct

Atmospheric circulation modulates the spatial variability of temperature in the Atlantic-Arctic region

2019

International audience; The Arctic region has experienced significant warming during the past two decades with major implications on the cryosphere. The causes of Arctic amplification are still an open question within the scientific community, attracting recent interest. The goal of this study is to quantify the contribution of atmospheric circulation on temperature variability in the Atlantic–Arctic region at decadal to intra‐annual timescales from 1951 to 2014. Daily 20th Century reanalyses geopotential height anomalies at 500 hPa were clustered into different weather regimes to assess their contribution to observed temperature variability. The results show that in winter, 25% of the warm…

weather regimesAtmospheric Science010504 meteorology & atmospheric sciencesreanalysesAtmospheric circulationarctic amplification[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]atmospheric circulation0207 environmental engineeringGeopotential heightClimate changeinternal climate variability02 engineering and technology01 natural sciencesAtlantic–ArcticSea iceCryosphere020701 environmental engineeringAir mass0105 earth and related environmental sciencesgeographygeography.geographical_feature_category[SHS.GEO]Humanities and Social Sciences/GeographyArctic13. Climate action[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/ClimatologyClimatologyPolar amplificationEnvironmental science
researchProduct

The Large Observatory For x-ray Timing

2014

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

x-ray and γ-ray instrumentationcompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringVisionX-ray timingObservatoriesField of view01 natural sciences7. Clean energyneutron starsObservatory010303 astronomy & astrophysicsPhysicsEquipment and servicesApplied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsSteradian[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Computer Science Applications1707 Computer Vision and Pattern RecognitionX-ray detectorsCondensed Matter Physicscompact objectsX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsX-ray detector[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cosmic VisionSpectral resolutionmicrochannel platesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNOmicrochannel platecompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic EngineeringSettore FIS/05 - Astronomia e AstrofisicaX-rayscompact object0103 physical sciencesElectronicOptical and Magnetic MaterialsElectrical and Electronic EngineeringSpectral resolutionInstrumentation and Methods for Astrophysics (astro-ph.IM)dense hadronic matterSensors010308 nuclear & particles physicsX-ray imagingAstronomyAccretion (astrophysics)[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron star13. Climate actionx-ray and γ-ray instrumentation; neutron stars; dense hadronic matter[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Gamma-ray burstastro-ph.IM
researchProduct

Long-term changes in pigmentation of arctic Daphnia provide potential for reconstructing aquatic UV exposure

2016

Abstract Despite the biologically damaging impacts of solar ultraviolet radiation (UV) in nature, little is known about its natural variability, forcing mechanisms, and long-term effects on ecosystems and organisms. Arctic zooplankton, for example the aquatic keystone genus Daphnia (Crustacea, Cladocera) responds to biologically damaging UV by utilizing photoprotective strategies, including pigmentation. We examined the preservation and content of UV-screening pigments in fossil Daphnia remains (ephippia) in two arctic lake sediment cores from Cornwallis Island (Lake R1), Canada, and Spitsbergen (Lake Fugledammen), Svalbard. The aims were to document changes in the degree of UV-protective p…

zooplankton0106 biological sciencesArcheology010504 meteorology & atmospheric sciencesta1171Climate change010603 evolutionary biology01 natural sciencesDaphniaZooplanktonUV radiationfossil pigmentsEcosystem14. Life underwaterEcology Evolution Behavior and SystematicsEphippia0105 earth and related environmental sciencesGlobal and Planetary ChangepaleolimnologybiologyEcologyAquatic ecosystemarctic lakesGeology15. Life on landbiology.organism_classificationOceanographyCladoceraArctic13. Climate actionta1181Quaternary Science Reviews
researchProduct

Carbon cycle and sea-water palaeotemperature evolution at the Middle-Late Jurassic transition, eastern Paris Basin (France).

2014

14 pages; International audience; A very high-resolution carbon and oxygen stable isotope analysis (bulk-carbonate) of a biostratigraphically well-constrained Callovian-Oxfordian series is provided here for the first time. The homogeneity of the clayey series and the weak diagenetic alteration allow the isotopic signal variations to be considered as primary in origin. A prominent and brief negative excursion in the δ13C curve (−2‰), occurring at the start of the Middle Callovian (Jason Zone - Obductum Subzone) and correlated regionally, suggests a possible methane release. The increasing δ13C values thereafter up to the Early Oxfordian, concomitant with a warming episode, highlight the buri…

δ18OStratigraphy[SDE.MCG]Environmental Sciences/Global ChangesCallovianOceanography[ SDU.STU.ST ] Sciences of the Universe [physics]/Earth Sciences/StratigraphyIsotopes of oxygenCarbon cycleOxfordianPaleontology[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry14. Life underwaterIsotope analysisδ13CbiologyCarbon isotopesGeologybiology.organism_classification[ SDU.STU.GC ] Sciences of the Universe [physics]/Earth Sciences/GeochemistrySea-water paleotemperatures[ SDE.MCG ] Environmental Sciences/Global ChangesGeophysicsPaleoenvironmental changes13. Climate actionIsotopes of carbon[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/StratigraphyOxygen isotopesEconomic GeologyGlobal coolingBelemnitesGeology
researchProduct