Search results for "Clusterin"

showing 10 items of 478 documents

Clustering and Registration of Multidimensional Functional Data

2013

In order to find similarity between multidimensional curves, we consider the application of a procedure that provides a simultaneous assignation to clusters and alignment of such functions. In particular we look for clusters of multivariate seismic waveforms based on EM-type procedure and functional data analysis tools.

Functional data Curves clustering registration of functions.Multivariate statisticsSimilarity (network science)Computer sciencebusiness.industryFunctional data analysisPattern recognitionArtificial intelligenceSettore SECS-S/01 - StatisticaCluster analysisbusinessWarping function
researchProduct

Functional Linear Models for the Analysis of Similarity of Waveforms

2023

In seismology methods based on waveform similarity analysis are adopted to identify sequences of events characterized by similar fault mechanism and propagation pattern. Seismic waves can be considered as spatially interdependent, three dimensional curves depending on time and the waveform similarity analysis can be configured as a functional clustering approach, on the basis of which the membership is assessed by the shape of the temporal patterns. For providing qualitative extraction of the most important information from the recorded signals, we propose the use of metadata, related to the waves, as covariates of a functional response regression model. The temporal patterns of this effect…

Functional response regressionStructured functional principal componentFunctional data depthWaveforms clusteringSettore SECS-S/01 - Statistica
researchProduct

An integrated fuzzy cells-classifier

2007

This paper introduces a genetic algorithm able to combine different classifiers based on different distance functions. The use of a genetic algorithm is motivated by the fact that the combination phase is based on the optimization of a vote strategy. The method has been applied to the classification of four types of biological cells, results show an improvement of the recognition rate using the genetic algorithm combination strategy compared with the recognition rate of each single classifier.

Fuzzy classificationMeta-optimizationbusiness.industryPopulation-based incremental learningFuzzy setPattern recognitionMultiple classifiersMachine learningcomputer.software_genreFuzzy logicClusteringComputingMethodologies_PATTERNRECOGNITIONGenetic algorithmSignal ProcessingGenetic algorithmClassifier fusionFuzzy setComputer Vision and Pattern RecognitionArtificial intelligenceCluster analysisbusinessClassifier (UML)computerMathematics
researchProduct

A Combined Fuzzy and Probabilistic Data Descriptor for Distributed CBIR

2009

With the wide diffusion of digital image acquisition devices, the cost of managing hundreds of digital images is quickly increasing. Currently, the main way to search digital image libraries is by keywords given by the user. However, users usually add ambiguos keywords for large set of images. A content-based system intended to automatically find a query image, or similar images, within the whole collection is needed. In our work we address the scenario where medical image collections, which nowadays are rapidly expanding in quantity and heterogeneity, are shared in a distributed system to support diagnostic and preventive medicine. Our goal is to produce an efficient content-based descript…

Fuzzy clustering distributed CBIR medical imagesFuzzy clusteringInformation retrievalComputer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONProbabilistic logicDigital imagingcomputer.software_genreDigital imageAutomatic image annotationDigital image processingData miningImage analysisImage retrievalcomputer
researchProduct

Unsupervised tissue classification of brain MR images for voxel-based morphometry analysis

2016

In this article, a fully unsupervised method for brain tissue segmentation of T1-weighted MRI 3D volumes is proposed. The method uses the Fuzzy C-Means (FCM) clustering algorithm and a Fully Connected Cascade Neural Network (FCCNN) classifier. Traditional manual segmentation methods require neuro-radiological expertise and significant time while semiautomatic methods depend on parameter's setup and trial-and-error methodologies that may lead to high intraoperator/interoperator variability. The proposed method selects the most useful MRI data according to FCM fuzziness values and trains the FCCNN to learn to classify brain’ tissues into White Matter, Gray Matter, and Cerebro-Spinal Fluid in …

Fuzzy clusteringComputer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONcomputer.software_genreFuzzy logicImaging phantom030218 nuclear medicine & medical imaging03 medical and health sciencesbrain images segmentation0302 clinical medicinevoxel-based morphometryBrain segmentationSegmentationElectrical and Electronic EngineeringCluster analysisSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniArtificial neural networkbusiness.industryUsabilityneural networksElectronic Optical and Magnetic MaterialsComputingMethodologies_PATTERNRECOGNITIONfuzzy clusteringunsupervised tissues classificationComputer Vision and Pattern RecognitionData miningbusinesscomputer030217 neurology & neurosurgerySoftwareInternational Journal of Imaging Systems and Technology
researchProduct

Distance-constrained data clustering by combined k-means algorithms and opinion dynamics filters

2014

Data clustering algorithms represent mechanisms for partitioning huge arrays of multidimensional data into groups with small in–group and large out–group distances. Most of the existing algorithms fail when a lower bound for the distance among cluster centroids is specified, while this type of constraint can be of help in obtaining a better clustering. Traditional approaches require that the desired number of clusters are specified a priori, which requires either a subjective decision or global meta–information knowledge that is not easily obtainable. In this paper, an extension of the standard data clustering problem is addressed, including additional constraints on the cluster centroid di…

Fuzzy clusteringCorrelation clusteringSingle-linkage clusteringConstrained clusteringcomputer.software_genreDetermining the number of clusters in a data setSettore ING-INF/04 - AutomaticaData clustering k–means Opinion dynamics Hegelsmann–Krause modelCURE data clustering algorithmData miningCluster analysisAlgorithmcomputerk-medians clusteringMathematics22nd Mediterranean Conference on Control and Automation
researchProduct

Minimum message length clustering: an explication and some applications to vegetation data

2001

In this paper, we examine the application of a particular approach to induction, the minimum message length principle and illustrate some of the problems that can be addressed through its use. The MML principle seeks to identify an optimal model within some specified parameterised class of models and for this paper we have chosen to concentrate on a single model class, that of mixture separation or fuzzy clustering. The first section presents, in outline, an MML methodology for fuzzy clustering. We then present some applications, including the nature of the within-cluster model, examination of the univocality of results for different groups of species and the effectiveness of presence data …

Fuzzy clusteringEcologyComputer scienceVegetationcomputer.software_genreClass (biology)Minimum message lengthExplicationSection (archaeology)Animal ecologyData miningCluster analysiscomputerEcology Evolution Behavior and SystematicsCommunity Ecology
researchProduct

Fuzzy C-Means Inspired Free Form Deformation Technique for Registration

2009

This paper presents a novel method aimed to free form deformation function approximation for purpose of image registration. The method is currently feature-based. The algorithm is inspired to concepts derived from Fuzzy C-means clustering technique such as membership degree and cluster centroids. After algorithm explanation, tests and relative results obtained are presented and discussed. Finally, considerations on future improvements are elucidated.

Fuzzy clusteringFuzzy classificationbusiness.industryComputer sciencefuzzy medical image registrationImage registrationFuzzy logicDefuzzificationComputingMethodologies_PATTERNRECOGNITIONFLAME clusteringComputer visionFree-form deformationArtificial intelligenceCluster analysisbusinessAlgorithm
researchProduct

Scalable Clustering by Iterative Partitioning and Point Attractor Representation

2016

Clustering very large datasets while preserving cluster quality remains a challenging data-mining task to date. In this paper, we propose an effective scalable clustering algorithm for large datasets that builds upon the concept of synchronization. Inherited from the powerful concept of synchronization, the proposed algorithm, CIPA (Clustering by Iterative Partitioning and Point Attractor Representations), is capable of handling very large datasets by iteratively partitioning them into thousands of subsets and clustering each subset separately. Using dynamic clustering by synchronization, each subset is then represented by a set of point attractors and outliers. Finally, CIPA identifies the…

Fuzzy clusteringGeneral Computer ScienceComputer scienceSingle-linkage clusteringCorrelation clusteringConstrained clustering02 engineering and technologycomputer.software_genreComputingMethodologies_PATTERNRECOGNITIONData stream clusteringCURE data clustering algorithm020204 information systems0202 electrical engineering electronic engineering information engineeringCanopy clustering algorithm020201 artificial intelligence & image processingData miningCluster analysiscomputerACM Transactions on Knowledge Discovery from Data
researchProduct

Paradigm of tunable clustering using Binarization of Consensus Partition Matrices (Bi-CoPaM) for gene discovery

2013

Copyright @ 2013 Abu-Jamous et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight cluster…

Fuzzy clusteringMicroarraysSingle-linkage clusteringGenes FungalGene Expressionlcsh:MedicineBiologyFuzzy logicSet (abstract data type)Molecular GeneticsEngineeringGenome Analysis ToolsYeastsConsensus clusteringMolecular Cell BiologyDatabases GeneticCluster (physics)GeneticsCluster AnalysisBinarization of Consensus Partition Matrices (Bi-CoPaM)Cluster analysislcsh:ScienceGene clusteringBiologyOligonucleotide Array Sequence AnalysisGeneticsMultidisciplinarybusiness.industryCell Cycleta111lcsh:RComputational BiologyPattern recognitionGenomicsgene discoveryPartition (database)tunable binarization techniquesComputingMethodologies_PATTERNRECOGNITIONGenesCell cyclesSignal Processinglcsh:QArtificial intelligencebusinessGenomic Signal ProcessingAlgorithmsResearch Articleclustering
researchProduct