Search results for "Coalescence"

showing 10 items of 92 documents

GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

2018

The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm…

Design sensitivityneutron star: binarygravitational radiation: stochasticAstronomyX-ray binaryGeneral Physics and AstronomyAstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationGravitational wave backgroundGravitational Waves Neutron Stars Stochastic Background Virgo LIGOblack holeLIGOstochastic modelQCQBPhysicsGAMMA-RAY BURSTSSignal to noise ratioStochastic systemsBlack holesGravitational effectsarticleAstrophysics::Instrumentation and Methods for AstrophysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSING[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sources Experimental studies of gravity Gravitational WavesGravitationBinary neutron starsX-ray bursterBinsAstrophysics::High Energy Astrophysical PhenomenaMERGERSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesgravitational radiation: direct detectionBinary pulsarNeutron starsSTAR-FORMATIONPhysics and Astronomy (all)General Relativity and Quantum CosmologyBinary black holebinary: coalescence0103 physical sciencesFrequency bandsddc:530RATESINTERFEROMETERS010306 general physicsAstrophysics::Galaxy AstrophysicsNeutronsGravitational Waves010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundgravitational radiationAstronomyNeutron Stars530 Physikbinary: compactsensitivityStarsLIGObackground: stochasticEVOLUTIONsignal noise ratioVIRGOPhysics and Astronomyblack hole: binarygravitational radiation: emissionStellar black holeStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikHIGH-REDSHIFTneutron star: coalescencePhysical Review Letters
researchProduct

Photocatalytic coalescence of functionalized gold nanoparticles.

2009

A novel strategy for the synthesis of chromophore-functionalized AuNPs with a narrow size distribution is reported. It consists of increasing the size of preprepared NPs by means of a fast (second scale) and clean (light and an organic photocatalyst) method. The results agree with thiolate ligand liberation from the NP surface promoted by photogenerated radicals. This lets gold cores come together and finally coalesce.

Coalescence (physics)Materials sciencePyrenesLigandNanoparticleMetal NanoparticlesSurfaces and InterfacesChromophoreCondensed Matter PhysicsPhotochemistryPhotochemical ProcessesCatalysisCatalysisBenzophenonesTransition metalColloidal goldElectrochemistryPhotocatalysisGeneral Materials ScienceGoldSpectroscopyLangmuir : the ACS journal of surfaces and colloids
researchProduct

Morphology of PEO/PDMS blends during shear: Coexistence of two droplet/matrix structures and additive effects

2005

Abstract The morphologies of blends of polyethyleneoxide (PEO 37) and poly(dimethylsiloxane)s (PDSM), with viscosity ratios, λ , of approximately one (PDMS 230) or 2.8 (PDMS 314, being the component of higher viscosity) and interfacial tensions on the order of 10 mN/m, were investigated at 70 °C as a function of shear rate (up to 10 s −1 ) and of time. For the system PEO 37/PDMS 230 we have also studied the influence of the compatibilizer dimethyl–ethyleneoxide–copolymer (PDMS- co -PEO), which is only reasonably soluble in PEO. To investigate the morphologies we have used an optical shear cell in combination with a light microscope. The most important observation consists in the formation o…

Coalescence (physics)Materials sciencePolymers and PlasticsOrganic ChemistryConcentration effectlaw.inventionShear rateShear (geology)Optical microscopeChemical engineeringlawPolymer chemistryMaterials ChemistryCopolymerPolymer blendShear flowPolymer
researchProduct

All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems

2021

Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline. The search analyzes the most s…

binary: orbitneutron star: binaryPhysics and Astronomy (miscellaneous)Astronomybinary [neutron star]AstrophysicsGravitational Waves; LIGO (Observatory); Neutron Stars01 natural sciencesneutron starsGeneral Relativity and Quantum CosmologyMonte Carlo: Markov chainPhysics Particles & Fieldsbinary starsbinary systemsBinary SystemsLIGOgravitational waveQCQBpulsarastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_studySettore FIS/03Physicsorbit [binary]General relativityPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenabinary stardata analysis methodsensitivity [detector]General relativitygr-qcfrequency [modulation]Populationneutron star: spinFOS: Physical sciencesalternative theories of gravityMarkov chain [Monte Carlo]General Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsGravitational Waves Neutron Stars Binary Systems LIGO VirgoLIGO (Observatory)emission [gravitational radiation]Pulsarbinary: coalescence0103 physical sciencesBinary starddc:530spin [neutron star]background [gravitational radiation]010306 general physicseducationSTFCOrbital elementsGravitational WavesScience & Technology010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundmodulation: frequencyRCUKNeutron StarsLIGOgravitational radiation detectordetector: sensitivityNeutron starVIRGOgravitational radiation: emissionDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikcoalescence [binary][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]binary stars; neutron stars
researchProduct

2017

Strombolian volcanism is a ubiquitous form of activity, driven by the ascent and bursting of bubbles of slug morphology. Whilst considerable attention has been devoted to understanding the behaviour of individual slugs in this regime, relatively little is known about how inter-slug interactions modify flow conditions. Recently, we reported on high temporal frequency strombolian activity on Etna, in which the larger erupted slug masses were followed by longer intervals before the following explosion than the smaller bursts (Pering et al., 2015). We hypothesised that this behaviour arose from the coalescence of ascending slugs causing a prolonged lag before arrival of the next distinct bubble…

Coalescence (physics)geographygeography.geographical_feature_category010504 meteorology & atmospheric sciencesbiologySlugBubbleVolcanismMechanics010502 geochemistry & geophysicsbiology.organism_classification01 natural sciencesStrombolian eruptionGeophysicsElectrical conduitVolcanoGeochemistry and PetrologyGas slugSeismologyGeology0105 earth and related environmental sciencesJournal of Volcanology and Geothermal Research
researchProduct

Cloud droplets to drizzle: Contribution of transition drops to microphysical and optical properties of marine stratocumulus clouds

2017

Aircraft measurements of the ubiquitous marine stratocumulus cloud type, with over 3000 km of in situ data from the Pacific during the Cloud System Evolution in the Trades experiment, show the ability of the Holographic Detector for Clouds (HOLODEC) instrument to smoothly interpolate the small and large droplet data collected with Cloud Droplet Probe and 2DC instruments. The combined, comprehensive instrument suite reveals a surprisingly large contribution in the predrizzle size range of 40–80 μm (transition droplets, or drizzlets), a range typically not measured and assumed to reside in a condensation-to-collision minimum between cloud droplet and drizzle modes. Besides shedding light on t…

Effective radiusCoalescence (physics)010504 meteorology & atmospheric sciencesMeteorologybusiness.industryCloud computingCollision01 natural sciencesMarine stratocumulus010309 opticsGeophysicsLiquid water content0103 physical sciencesGeneral Earth and Planetary SciencesEnvironmental scienceDrizzlebusinessImage resolution0105 earth and related environmental sciencesRemote sensingGeophysical Research Letters
researchProduct

Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart

2020

We study the impact of gas accretion on the orbital evolution of black-hole binaries initially at large separation in the band of the planned Laser Interferometer Space Antenna (LISA). We focus on two sources: (i)~stellar-origin black-hole binaries~(SOBHBs) that can migrate from the LISA band to the band of ground-based gravitational-wave observatories within weeks/months; and (ii) intermediate-mass black-hole binaries~(IMBHBs) in the LISA band only. Because of the large number of observable gravitational-wave cycles, the phase evolution of these systems needs to be modeled to great accuracy to avoid biasing the estimation of the source parameters. Accretion affects the gravitational-wave p…

010504 meteorology & atmospheric sciencesAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmology010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEAccretion (meteorology)Observableastro-ph.HE; astro-ph.HE; General Relativity and Quantum Cosmologygas: accretionblack holes gravitational wavesobservatoryInterferometrygravitational waves[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenainterferometermedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgravitational radiation: direct detectionelectromagnetic field: productionGeneral Relativity and Quantum Cosmologybinary: coalescencestatistical analysisSettore FIS/05 - Astronomia e Astrofisicagravitation: weak field0103 physical sciencesnumerical calculationsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLISAGravitational wavegravitational radiationOrder (ring theory)black hole: accretionAstronomy and Astrophysicsblack holesgravitational radiation detectorRedshiftBlack holeblack hole: binarySpace and Planetary ScienceSkygravitational radiation: emission[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-ray: detectorThe Astrophysical Journal
researchProduct

EFFECT OF SURFACTANT AND SUBSTRATE TEMPERATURE ON THE GROWTH OF Ag FILMS ON A SAPPHIRE SURFACE

1997

The possibility of modification of the thin film growth on an insulating (sapphire) substrate by using a Ga monolayer as a "surfactant" was studied. We found that the films grown in this way are electrically conducting and can emit photoelectrons at much lower thickness than those deposited on a pure substrate. The surfactant stabilizes the positions of Ag atoms on the substrate surface and inhibits the coalescence of small nuclei into bigger islands, even when the film is annealed to 450 K. This fact may be very important for thin metal film technology.

Coalescence (physics)Materials scienceSubstrate surfaceNanotechnologySurfaces and InterfacesPhotoelectric effectCondensed Matter PhysicsSurfaces Coatings and FilmsPulmonary surfactantChemical engineeringMonolayerMaterials ChemistrySapphireThin metalThin filmSurface Review and Letters
researchProduct

Cloud Particle Interactions

2010

In Chapter 10, we discussed the behavior of isolated cloud particles in sorne detai1. Now we shall consider their hydrodynamic interactions, with a view to providing a quantitative assessment of the processes of particle growth by collision and coalescence, and of collisional breakup. We shall first treat the collision problem for drops of radii less than about 500 μm which, in accordance with our previous description of drop distortion in Section 10.3.2, may be regarded as rigid spheres (at least when falling in isolation). This will be followed by a discussion of the phenomena of drop coalescence and breakup. Finally, we shall consider water drop-ice crystal and ice crystal-ice crystal in…

Coalescence (physics)PhysicsLiquid water contentDrop (liquid)SPHERESAstrophysics::Earth and Planetary AstrophysicsMechanicsBreakupSnowCollisionGraupel
researchProduct

Riming of Graupel: Wind Tunnel Investigations of Collection Kernels and Growth Regimes

2009

Abstract Laboratory experiments were carried out in the vertical wind tunnel in Mainz, Germany, to study the collision coalescence growth of single spherical ice particles having initial radii between 290 and 380 μm while they were freely floated in a laminar flow containing a cloud of supercooled droplets with radii between 10 and 20 μm. The experiments were performed in a temperature range between −8 and −12°C, where riming proceeds in the atmosphere, and with cloud liquid water contents lying between 0.9 and 1.6 g m−3 (i.e., values typically found in mixed-phase clouds). The collection kernels were calculated from the mass increase of the rimed ice particles and the average liquid water …

Coalescence (physics)Atmospheric ScienceMaterials scienceMeteorologyLiquid water contentLaminar flowAstrophysics::Earth and Planetary AstrophysicsMechanicsSupercoolingTemperature measurementGraupelWind tunnelIcingJournal of the Atmospheric Sciences
researchProduct