Search results for "Cobalt"

showing 10 items of 1098 documents

Field-induced single ion magnet behaviour of discrete and one-dimensional complexes containing [bis(1-methylimidazol-2-yl)ketone]-cobalt(II) building…

2021

International audience; We describe herein the first examples of six-coordinate CoII single-ion magnets (SIMs) based on the β-diimine Mebik ligand [Mebik = bis(1-methylimidazol-2-yl)ketone]: two mononuclear [CoII(Rbik)2L2] complexes and one mixed-valence {CoIII2CoII}n chain of formulas [CoII(Mebik)(H2O)(dmso)(μ-NC)2CoIII2(μ-2,5-dpp)(CN)6]n·1.4nH2O (3) [L = NCS (1), NCSe (2) and 2,5-dpp = 2,5-bis(2-pyridyl)pyrazine (3)]. Two bidentate Mebik molecules plus two monodentate N-coordinated pseudohalide groups in cis positions build somewhat distorted octahedral surroundings around the high-spin cobalt(II) ions in 1 and 2. The diamagnetic [CoIII2(μ-2,5-dpp)(CN)8]2− metalloligand coordinates the pa…

DenticityMaterials sciencePyrazine010405 organic chemistrychemistry.chemical_element010402 general chemistry01 natural sciences0104 chemical scienceslaw.inventionInorganic ChemistryMagnetizationCrystallographyParamagnetismMagnetic anisotropychemistry.chemical_compoundchemistrylaw[CHIM]Chemical SciencesMoleculeElectron paramagnetic resonanceCobaltDalton transactions (Cambridge, England : 2003)
researchProduct

Experimental and Computational Study of Unique Tetranuclear µ 3 ‐Chloride and µ‐Phenoxo/Chloro‐Bridged Defective Dicubane Cobalt(II) Clusters

2016

Two tetranuclear CoII clusters [Co4(L)2(µ3-Cl)2Cl2] have been prepared by using multidentate diaminobisphenolate ligands. The solid-state structures of the complexes were determined by single-crystal X-ray diffraction. The cores of the cluster compounds can be defined as a two-vertex-deficient dicubane geometry (pseudo-dicubane). In the central unit, the cobalt(II) cations are linked through phenoxide oxygen (outer bridges) and chloride anions (inner bridges), previously unprecedented in this type of cobalt cluster. The magnetic properties were studied by both experimental and computational methods. By using a combination of techniques, we were able to determine the nature and strength of t…

DenticityStereochemistryChemistrychemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologycobalt01 natural sciencesChloride0104 chemical sciencesMagnetic exchangeInorganic ChemistryCrystallographyCentral unitIntramolecular forcedensity functional calculationsmedicineCluster (physics)cluster compoundsmagnetic properties0210 nano-technologyta116Cobaltmedicine.drugEuropean Journal of Inorganic Chemistry
researchProduct

Cobalt(II) and copper(II) assembling through a functionalized oxamate-type ligand

2014

Two new metal complexes of formula {[Co(Hpcpa)(H2O)3]n� 3/2nH2O} (1) and [Cu2(MeHpcpa)4(MeOH)2] � H2O� 3.68 MeOH (2 )[ H 3pcpa = N-(4-carboxyphenyl)oxamic acid and MeH2pcpa = methyl ester derivative of H3pcpa] have been synthesized and their structures determined by X-ray diffraction. 1 is a neutral zigzag chain of cobalt(II) ions bridged by Hpcpa 2� ligands exhibiting the bidentate/monodentate coordination mode. Each cobalt(II) ion is six-coordinate with three mer positioned water molecules, two oxamate-oxygens from a Hpcpa 2� ligand and a carboxylate-oxygen from another Hpcpa 2� group building a somewhat distorted octahedral surrounding. The intrachain cobalt–cobalt separation is 11.326(2…

DenticityStereochemistryLigandchemistry.chemical_elementCrystal structureCopperSquare pyramidal molecular geometryInorganic ChemistryCrystallographyOctahedronchemistryMaterials ChemistryMoleculePhysical and Theoretical ChemistryCobaltPolyhedron
researchProduct

Coordination versatility of 1,3-bis[3-(2-pyridyl)pyrazol-1-yl]propane: Co(II) and Ni(II) complexes

2006

Abstract The ligand 1,3-bis[3-(2-pyridyl)pyrazol-1-yl]propane (L8) has afforded six-coordinate monomeric and dimeric complexes [(L8)CoII(H2O)2][ClO4]2 (1), [(L8)NiII(MeCN)2][BPh4]2 (2), [(L8)NiII(O2CMe)][BPh4] (3), and [ ( L 8 ) 2 Co 2 II ( μ - O 2 CMe ) 2 ] [ BPh 4 ] 2 ( 4 ) . The crystal structures of 1, 2 · MeCN, 3, and 4 revealed that the ligand L8 is flexible enough to expand its coordinating ability by fine-tuning the angle between the chelating fragments and hence folds around cobalt(II)/nickel(II) centers to act as a tetradentate chelate, allowing additional coordination by two trans-H2O, cis-MeCN, and a bidentate acetate affording examples of distorted octahedral Co II N 2 ( pyridy…

DenticityStereochemistryLigandchemistry.chemical_elementCrystal structurePyrazoleInorganic Chemistrychemistry.chemical_compoundNickelCrystallographychemistryOctahedronMaterials ChemistryPhysical and Theoretical ChemistryAcetonitrileCobaltInorganica Chimica Acta
researchProduct

Analyser of chromium and/or cobalt

2003

Abstract Two stopped-flow manifolds have been proposed for individual or simultaneous determination of chromium and cobalt in water samples. Automated procedures based on multicommutation systems have emphasised the differences of their catalytic effect in luminol–hydrogen peroxide chemiluminescence reaction. A more rapid decay of signal was observed for Co for both configurations (flow injection or continuous injection). The influence of chemical and hydrodynamic variables has been studied in order to establish the robustness of method. The analysis rate was lower 1.5 min per replicate. Chemometric tools have been employed for the resolution of their contributions. Partial least squares (P…

Detection limitAnalyserAnalytical chemistrychemistry.chemical_elementBiochemistryAnalytical ChemistryChemometricsChromiumCertified reference materialschemistryStandard additionPartial least squares regressionEnvironmental ChemistryCobaltSpectroscopyAnalytica Chimica Acta
researchProduct

A new mixed-valence hexanuclear cobalt complex, [Co4IICo2III(dea)2(Hdea)4)(piv)4](ClO4)2·H2O: Synthesis, crystal structure and magnetic properties

2010

A new Co II /Co III hexanuclear complex, [Co 4 II Co 2 III (dea) 2 (Hdea) 4 )(piv) 4 ](ClO 4 ) 2 ·H 2 O 1 , has been obtained by reacting cobalt(II) perchlorate, diethanolamine, and pivalic acid (H 2 dea = diethanolamine and piv = pivalato anion). The cobalt ions are held together by four μ 3 and four μ 2 alkoxo bridges as well as by four syn – syn carboxylato groups. The hexanuclear motif contains four Co(II) and two Co(III) ions. The {Co II 4 Co III 2 (μ 2 -O) 4 (μ 3 -O) 4 } core can be described as a four face-sharing monovacant and bivacant distorted heterocubane units. The cobalt(III) ions are hexacoordinated. Two of the cobalt(II) are hexacoordinated, while the two others are pentacoo…

DiethanolamineValence (chemistry)Pivalic acidchemistry.chemical_elementCrystal structureInorganic ChemistryPerchloratechemistry.chemical_compoundCrystallographyBipyramidchemistryMaterials ChemistrySinglet statePhysical and Theoretical ChemistryCobaltInorganica Chimica Acta
researchProduct

Crossing the boundary between face-centred cubic and hexagonal close packed: the structure of nanosized cobalt is unraveled by a model accounting for…

2014

The properties of nanostructured cobalt in the fields of magnetic, catalytic and biomaterials depend critically on Co close packing. This paper reports a structural analysis of nanosized cobalt based on the whole X-ray diffraction (XRD) pattern simulation allowed by the Debye equation. The underlying structural model involves statistical sequences of cobalt layers and produces simulated XRD powder patterns bearing the concurrent signatures of hexagonal and cubic close packing (h.c.p. and f.c.c.). Shape, size distribution and distance distribution between pairs of atoms are also modelled. The simulation algorithm allows straightforward fitting to experimental data and hence the quantitative …

DiffractionMaterials scienceExtended X-ray absorption fine structureClose-packing of equal spheresStackingAb initiochemistry.chemical_elementMolecular physicsGeneral Biochemistry Genetics and Molecular BiologyXANESCondensed Matter::Materials ScienceCrystallographysymbols.namesakechemistryDebye–Hückel equationsymbolsCobaltJournal of Applied Crystallography
researchProduct

Apoferritin-encapsulated Ni and Co superparamagnetic nanoparticles

2006

Ni and Co nanoparticles (average diameters 3 and 3.5 nm) have been prepared within the apoferritin cavity. The protein shell prevents bulk aggregation of the metal particles, rendering them water soluble. X-Ray diffraction, transmission electronic microscopy and magnetization measurements have been used for characterizing the nanoparticles. The magnetic study of both nanoparticles confirmed the expected superparamagnetic behavior.

DiffractionMaterials sciencechemistry.chemical_elementNanoparticleNanotechnologyGeneral Chemistryequipment and suppliesMetalMagnetizationNickelchemistryChemical engineeringvisual_artMaterials Chemistryvisual_art.visual_art_mediumMagnetic nanoparticleshuman activitiesCobaltSuperparamagnetismJ. Mater. Chem.
researchProduct

Pressure-Driven Symmetry-Preserving Phase Transitions in Co(IO3)2

2021

[EN] High-pressure synchrotron X-ray diffraction studies of cobalt iodate, Co(IO3)(2), reveal a counterintuitive pressure-induced expansion along certain crystallographic directions. High-pressure Raman and infrared spectroscopy, combined with density-functional theory calculations, reveal that with increasing pressure, it becomes energetically favorable for certain I-O bonds to increase in length over the full range of pressure studied up to 28 GPa. This phenomenon is driven by the high-pressure behavior of iodate ion lone electron pairs. Two pressure-induced isosymmetric monoclinic-monoclinic phase transitions are observed at around 3.0 and 9.0 GPa, which are characterized by increasing o…

DiffractionPhase transitionElectron pairMaterials sciencechemistry.chemical_elementInfrared spectroscopySynchrotronSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionsymbols.namesakechemistry.chemical_compoundGeneral EnergychemistrylawChemical physicsFISICA APLICADAsymbolsPhysical and Theoretical ChemistryRaman spectroscopyCobaltIodateThe Journal of Physical Chemistry C
researchProduct

Cobalt-Containing Silicotungstate Sandwich Dimer [{Co3(B-β-SiW9O33(OH))(B-β-SiW8O29(OH)2)}2]22-

2005

The 6-cobalt-substituted [{Co3(B-beta-SiW9O33(OH))(B-beta-SiW8O29(OH)2)}2]22- has been characterized by IR and UV-vis spectroscopy, elemental analysis, magnetic studies, electrochemistry, and gel filtration chromatography. A single-crystal X-ray analysis was carried out on K10Na12[{Co3(B-beta-SiW9O33(OH))(B-beta-SiW8O29(OH)2)}2].49H2O (KNa-1), which crystallizes in the monoclinic system, space group P2(1)/n, with a=19.9466(8) A, b=24.6607(10) A, c=34.0978(13) A, beta=102.175(1) degrees, and Z=2. Polyanion 1 represents a novel class of asymmetric sandwich-type polyanions. It contains three cobalt ions, which are encapsulated between an unprecedented (B-beta-SiW9O34) fragment and a (B-beta-Si…

DimerSize-exclusion chromatographyAnalytical chemistrySolid-statechemistry.chemical_elementElectrochemistryInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryPhysical and Theoretical ChemistryCyclic voltammetrySpectroscopyCobaltMonoclinic crystal systemInorganic Chemistry
researchProduct