Search results for "Coculture Techniques"

showing 10 items of 183 documents

Beta3 adrenergic receptor stimulation in human macrophages inhibits NADPHoxidase activity and induces catalase expression via PPARγ activation

2017

IF 4.521; International audience; The beta3 adrenergic receptor (β3-AR) stimulation plays a protective role against preterm labor by blocking myometrial contraction, cytokine production, remodeling and apoptosis. We previously demonstrated that macrophage-induced ROS production in the myometrium was a key element leading to the induction of all these labor-associated features. We thus aimed to investigate if the β3-AR could be expressed in human macrophages and could trigger its protective role in the myometrium by directly inhibiting ROS production. Using lipopolysaccharide (LPS)-stimulated myometrial samples and cell co-culture experiments, we demonstrated that β3-AR stimulation inhibits …

0301 basic medicineLipopolysaccharidesmedicine.medical_specialtyLipopolysaccharidePPARγPreterm laborMacrophagemedicine.medical_treatmentPeroxisome proliferator-activated receptorStimulationApoptosisAntioxidants03 medical and health scienceschemistry.chemical_compoundTransactivation0302 clinical medicineInternal medicinemedicineHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMolecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biologychemistry.chemical_classificationNADPH oxidasebiologybeta3 adrenergic receptorMacrophagesMyometriumNADPH OxidasesROSCell BiologyCatalaseCoculture Techniques3. Good healthCell biologyPPAR gamma030104 developmental biologyEndocrinologyCytokinechemistryGene Expression RegulationReceptors Adrenergic beta-3biology.proteinMyometriumFemaleSignal transductionReactive Oxygen Species030217 neurology & neurosurgerySignal Transduction
researchProduct

Amphiregulin contained in NSCLC-exosomes induces osteoclast differentiation through the activation of EGFR pathway

2017

AbstractNon-small cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths worldwide. The majority of patients are diagnosed in advanced disease stage. Bone metastasis is the most frequent complication in NSCLC resulting in osteolytic lesions. The perfect balance between bone-resorbing osteoclasts and bone-forming osteoblasts activity is lost in bone metastasis, inducing osteoclastogenesis. In NSCLC, the epidermal growth factor receptor (EGFR) pathway is constitutively activated. EGFR binds Amphiregulin (AREG) that is overexpressed in several cancers such as colon, breast and lung. Its levels in plasma of NSCLC patients correlate with poor prognosis and AREG was recently …

0301 basic medicineLung NeoplasmsCellular differentiationAmphiregulin exosomes NSCLC EGFROsteoclastsExosomes NSCLC AmphiregulinNSCLCExosomesMice0302 clinical medicineSettore BIO/13 - Biologia ApplicataCarcinoma Non-Small-Cell LungMedicineEpidermal growth factor receptorRNA Small InterferingMultidisciplinarybiologyQProteolytic enzymesRBone metastasisCell Differentiation3. Good healthErbB ReceptorsGene Expression Regulation Neoplasticmedicine.anatomical_structureRANKL030220 oncology & carcinogenesisMedicineEngineering sciences. TechnologySciencePrimary Cell CultureBone NeoplasmsAmphiregulinArticle03 medical and health sciencesAmphiregulinOsteoclastCell Line TumorAnimalsHumansbusiness.industryRANK LigandBiological Transportmedicine.diseaseMicrovesiclesCoculture Techniquesrespiratory tract diseases030104 developmental biologyRAW 264.7 CellsImmunologybiology.proteinCancer researchbusiness
researchProduct

Studying Tumor-ReacTive T Cells: A Personalized Organoid Model.

2018

Cancer immunotherapies have shown substantial clinical activity for a subset of patients with epithelial cancers. Still, technological platforms to study cancer – T cell interactions for individual patients, and understand determinants of responsiveness, are presently lacking. Here, we establish and validate a platform to induce and analyze tumor-specific T cell responses for epithelial cancers in a personalized manner. We demonstrate that co-cultures of autologous tumor organoids and peripheral blood lymphocytes can be used to enrich for tumor-reactive T cells from peripheral blood of patients with mismatch repair deficient colorectal cancer and non-small cell lung cancer. Furthermore, we …

0301 basic medicineLymphocyteT-LymphocytesTranslation (biology)Cell BiologyBiologyCoculture TechniquesArticleOrganoids03 medical and health sciences030104 developmental biologymedicine.anatomical_structureNeoplasmsGeneticsmedicineCancer researchOrganoidMolecular MedicineCoculture TechniqueHumansValue (mathematics)Cell stem cell
researchProduct

Functional role of endothelial CXCL16/CXCR6-platelet-leucocyte axis in angiotensin II-associated metabolic disorders.

2018

Aims Angiotensin-II (Ang-II) is the main effector peptide of the renin-angiotensin system (RAS) and promotes leucocyte adhesion to the stimulated endothelium. Because RAS activation and Ang-II signalling are implicated in metabolic syndrome (MS) and abdominal aortic aneurysm (AAA), we investigated the effect of Ang-II on CXCL16 arterial expression, the underlying mechanisms, and the functional role of the CXCL16/CXCR6 axis in these cardiometabolic disorders. Methods and results Results from in vitro chamber assays revealed that CXCL16 neutralization significantly inhibited mononuclear leucocyte adhesion to arterial but not to venous endothelial cells. Flow cytometry and immunofluorescence s…

0301 basic medicineMaleRHOAPhysiologyMice Knockout ApoE030204 cardiovascular system & hematology0302 clinical medicineLeukocytesReceptorCells CulturedMetabolic SyndromebiologyChemistryAngiotensin IIMiddle AgedAortic AneurysmVascular endothelial growth factor ALosartanmedicine.anatomical_structurecardiovascular systemFemaleCardiology and Cardiovascular Medicinemedicine.drugSignal TransductionAdultBlood Plateletsmedicine.medical_specialtyEndothelium03 medical and health sciencesPhysiology (medical)Internal medicinemedicineCell AdhesionAnimalsHumansPlatelet activationReceptors CXCR6Angiotensin II receptor type 1Endothelial CellsChemokine CXCL16Platelet ActivationAngiotensin IICoculture TechniquesMice Inbred C57BLDisease Models Animal030104 developmental biologyEndocrinologyCase-Control Studiesbiology.proteinAngiotensin II Type 1 Receptor BlockersCardiovascular research
researchProduct

Microenvironment in neuroblastoma: isolation and characterization of tumor-derived mesenchymal stromal cells

2018

Background It has been proposed that mesenchymal stromal cells (MSCs) promote tumor progression by interacting with tumor cells and other stroma cells in the complex network of the tumor microenvironment. We characterized MSCs isolated and expanded from tumor tissues of pediatric patients diagnosed with neuroblastomas (NB-MSCs) to define interactions with the tumor microenvironment. Methods Specimens were obtained from 7 pediatric patients diagnosed with neuroblastoma (NB). Morphology, immunophenotype, differentiation capacity, proliferative growth, expression of stemness and neural differentiation markers were evaluated. Moreover, the ability of cells to modulate the immune response, i.e. …

0301 basic medicineMaleRegistrieCancer ResearchCellular differentiationMesenchymal stromal cellsCell SeparationNeuroblastoma0302 clinical medicineImmunophenotypingCancer-Associated FibroblastsTumor MicroenvironmentCytotoxic T cellRegistriesStemnessCancer-Associated FibroblastCoculture TechniqueChildrenCells CulturedStemneChemistryMesenchymal stromal cellCell CycleEMTCell Differentiationlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensImmunohistochemistryMesenchymal Stem CellOncology030220 oncology & carcinogenesisChild PreschoolPopulation SurveillanceBone Marrow CellFemaleResearch ArticleHumanSignal TransductionStromal cellMicroenvironmentBone Marrow Cellslcsh:RC254-282Immunophenotyping03 medical and health sciencesGeneticsBiomarkers TumorHumansSettore MED/04 - Patologia GeneraleTumor microenvironmentGene Expression ProfilingMesenchymal stem cellInfantMesenchymal Stem CellsCoculture Techniques030104 developmental biologyTumor progressionCancer cellMutationCancer research
researchProduct

A study of PD-L1 expression in KRAS mutant non-small cell lung cancer cell lines exposed to relevant targeted treatments.

2017

We investigated PD-L1 changes in response to MEK and AKT inhibitors in KRAS mutant lung adenocarcinoma (adeno-NSCLC). PD-L1 expression was quantified using immunofluorescence and co-culture with a jurkat cell-line transfected with NFAT-luciferase was used to study if changes in PD-L1 expression in cancer cell lines were functionally relevant. Five KRAS mutant cell lines with high PD-L1 expression (H441, H2291, H23, H2030 and A549) were exposed to GI50 inhibitor concentrations of a MEK inhibitor (trametinib) and an AKT inhibitor (AZD5363) for 3 weeks. Only 3/5 (H23, H2030 and A549) and 2/5 cell lines (H441 and H23) showed functionally significant increases in PD-L1 expression when exposed to…

0301 basic medicineOncologyCell signalingLung NeoplasmsLuminescenceImmunofluorescenceMutantCancer Treatmentlcsh:MedicineSignal transductionERK signaling cascademedicine.disease_causeJurkat cellsB7-H1 AntigenLung and Intrathoracic TumorsMajor Histocompatibility ComplexWhite Blood Cells0302 clinical medicineAnimal CellsCarcinoma Non-Small-Cell LungMedicine and Health Scienceslcsh:ScienceTrametinibMultidisciplinarymedicine.diagnostic_testT CellsChemistryPhysicsElectromagnetic RadiationMEK inhibitorSignaling cascadesOncology030220 oncology & carcinogenesisPhysical SciencesKRASCellular TypesResearch Articlemedicine.medical_specialtyGeneral Science & TechnologyImmune CellsImmunologyResearch and Analysis MethodsImmunofluorescenceFluorescence03 medical and health sciencesCell Line TumorInternal medicineMD MultidisciplinarymedicineHumansImmunoassaysBlood Cellslcsh:RCancers and NeoplasmsBiology and Life SciencesCell BiologyCoculture TechniquesNon-Small Cell Lung Cancerrespiratory tract diseasesGenes ras030104 developmental biologyCell cultureMutationImmunologic TechniquesCancer researchClinical ImmunologyCancer biomarkerslcsh:QClinical MedicinePLoS ONE
researchProduct

The Immunomodulatory Properties of the Human Amnion-Derived Mesenchymal Stromal/Stem Cells Are Induced by INF-γ Produced by Activated Lymphomonocytes…

2020

Human mesenchymal stromal/stem cells (MSCs), being immunoprivileged and having immunomodulatory ability, represent a promising tool to be applied in the field of regenerative medicine. Based on numerous in vitro evidences, the immunological effects of MSCs on immune cells could depend on different mechanisms as cell-to-cell contact and paracrine signals. Furthermore, recent studies have shown that the immunomodulatory activity of MSCs is initiated by activated immune cells; thus, their interaction represents a potential homeostatic mechanism by which MSCs regulate the immune response. MSCs also release exosomes able to give different effects, in a paracrine manner, by influencing inflammato…

0301 basic medicineProgrammed Cell Death 1 ReceptorCell CommunicationLymphocyte ActivationimmunomodulationB7-H1 AntigenMonocytes0302 clinical medicineImmunology and AllergyOriginal ResearchChemistryCell DifferentiationHealthy VolunteersI-kappa B KinaseCell biologymedicine.anatomical_structureprimed-hAMSCsMonocyte differentiationCytokinesStem celllcsh:Immunologic diseases. AllergyStromal cellT cellPrimary Cell CultureImmunologyregenerative medicineexosomesInterferon-gamma03 medical and health sciencesParacrine signallingImmune systeminterferon-γmedicineHumansImmunologic FactorsAmnionhuman amnion-derived mesenchymal stem cellsCell ProliferationImmunosuppression TherapyPDL-1Mesenchymal stem cellImmunityM2-like monocytesMesenchymal Stem CellsCoculture TechniquesMicrovesiclesMicroRNAs030104 developmental biologyLeukocytes Mononuclearlcsh:RC581-607Interferon Regulatory Factor-1030215 immunologyFrontiers in Immunology
researchProduct

Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions

2016

A major cause of respiratory failure during influenza A virus (IAV) infection is damage to the epithelial–endothelial barrier of the pulmonary alveolus. Damage to this barrier results in flooding of the alveolar lumen with proteinaceous oedema fluid, erythrocytes and inflammatory cells. To date, the exact roles of pulmonary epithelial and endothelial cells in this process remain unclear.Here, we used an in vitro co-culture model to understand how IAV damages the pulmonary epithelial–endothelial barrier. Human epithelial cells were seeded on the upper half of a transwell membrane while human endothelial cells were seeded on the lower half. These cells were then grown in co-culture and IAV wa…

0301 basic medicinePulmonary and Respiratory Medicine030106 microbiologyBiologymedicine.disease_causeVirusCell LineTight Junctions03 medical and health sciencesInfluenza A Virus H1N1 SubtypemedicineInfluenza A virusHumansTight junctionInfluenza A Virus H5N1 SubtypeEpithelial CellsVirologyIn vitroEpitheliumCoculture TechniquesCell biologyPulmonary Alveoli030104 developmental biologymedicine.anatomical_structureCell cultureCytokinesPulmonary alveolusLumen (unit)European Respiratory Journal
researchProduct

CXCL10 and CCL21 Promote Migration of Pancreatic Cancer Cells Toward Sensory Neurons and Neural Remodeling in Tumors in Mice, Associated With Pain in…

2018

Background & Aims Pancreatic ductal adenocarcinoma (PDAC) is frequently accompanied by excruciating pain, which has been associated with attraction of cancer cells and their invasion of intrapancreatic sensory nerves. Neutralization of the chemokine CCL2 reduced cancer-associated pain in a clinical trial, but there have been no systematic analyses of the highly diverse chemokine families and their receptors in PDAC. Methods We performed an open, unbiased RNA-interference screen of mammalian chemokines in co-cultures of mouse PDAC cells (K8484) and mouse peripheral sensory neurons, and confirmed findings in studies of DT8082 PDAC cells. We studied the effects of chemokines on migration of PD…

0301 basic medicineReceptors CCR7ChemokineReceptors CXCR3Sensory Receptor Cellsendocrine system diseasesC-C chemokine receptor type 7CXCR303 medical and health sciencesChemokine receptor0302 clinical medicineCell MovementCell Line TumorGanglia SpinalPancreatic cancermedicineAnimalsHumansCXCL10AnalgesicsChemokine CCL21Hepatologybiologybusiness.industryGastroenterologyCancer Painmedicine.diseaseAntibodies NeutralizingCoculture Techniquesdigestive system diseasesChemokine CXCL10Mice Inbred C57BLPancreatic Neoplasms030104 developmental biologyCancer cellCancer researchbiology.protein030211 gastroenterology & hepatologybusinessCarcinoma Pancreatic DuctalSignal TransductionCCL21Gastroenterology
researchProduct

The development of a tissue-engineered tracheobronchial epithelial model using a bilayered collagen-hyaluronate scaffold

2016

Today, chronic respiratory disease is one of the leading causes of mortality globally. Epithelial dysfunction can play a central role in its pathophysiology. The development of physiologically-representative in vitro model systems using tissue-engineered constructs might improve our understanding of epithelial tissue and disease. This study sought to engineer a bilayered collagen-hyaluronate (CHyA-B) scaffold for the development of a physiologically-representative 3D in vitro tracheobronchial epithelial co-culture model. CHyA-B scaffolds were fabricated by integrating a thin film top-layer into a porous sub-layer with lyophilisation. The film layer firmly connected to the sub-layer with del…

0301 basic medicineScaffoldMaterials scienceCellular differentiationBiophysicsBronchiBioengineering02 engineering and technologyEpitheliumCell LineBiomaterials03 medical and health scienceschemistry.chemical_compoundTissue engineeringHyaluronic acidmedicineHumansHyaluronic AcidTissue EngineeringTissue ScaffoldsTight junctionMucinCell DifferentiationEpithelial CellsFibroblasts021001 nanoscience & nanotechnologyCoculture TechniquesEpitheliumCell biologyTrachea030104 developmental biologymedicine.anatomical_structurechemistryMechanics of MaterialsDrug deliveryCeramics and CompositesFeasibility StudiesCollagen0210 nano-technologyBiomedical engineeringBiomaterials
researchProduct