Search results for "Codimension"

showing 10 items of 112 documents

A note on the dimensions of Assouad and Aikawa

2013

We show that in Euclidean space and other regular metric spaces, the notions of dimensions defined by Assouad and Aikawa coincide. In addition, in more general metric spaces, we study the relationship between these two dimensions and a related codimension and give an application of the Aikawa (co)dimension for the Hardy inequalities.

Pure mathematicsAssouad dimensionEuclidean spaceGeneral Mathematicsmetric spaceDimension (graph theory)Mathematical analysista111CodimensionAikawa dimension54F4554E35Metric space26D15Hardy inequalitydoubling measureMathematics::Metric Geometry28A12MathematicsJournal of the Mathematical Society of Japan
researchProduct

Bifurcations of links of periodic orbits in non-singular Morse–Smale systems with a rotational symmetry on S3

2000

Abstract In this paper we consider a rotational symmetry on a non-singular Morse–Smale (NMS) system analyzing the restrictions this symmetry imposes on the links defined by the set of its periodic orbits and to the appearance of local generic codimension one bifurcations in the set of NMS flows on S 3 . The topological characterization is obtained by writing the involved links in terms of Wada operations. It is also obtained that symmetry implies that in general bifurcations have to be multiple. On the other hand, we also see that there exists a set of links that cannot be related to any other by sequences of this kind of bifurcation.

Pure mathematicsExistential quantificationRotational symmetryCodimensionCharacterization (mathematics)Morse codeTopologyNMS systemslaw.inventionSet (abstract data type)BifurcationslawSymmetric linksGeometry and TopologySymmetry (geometry)BifurcationMathematicsTopology and its Applications
researchProduct

Central polynomials of associative algebras and their growth

2018

Pure mathematicsExponential growthApplied MathematicsGeneral MathematicsCodimensionAssociative propertyMathematicsProceedings of the American Mathematical Society
researchProduct

Homological Projective Duality for Determinantal Varieties

2016

In this paper we prove Homological Projective Duality for crepant categorical resolutions of several classes of linear determinantal varieties. By this we mean varieties that are cut out by the minors of a given rank of a n x m matrix of linear forms on a given projective space. As applications, we obtain pairs of derived-equivalent Calabi-Yau manifolds, and address a question by A. Bondal asking whether the derived category of any smooth projective variety can be fully faithfully embedded in the derived category of a smooth Fano variety. Moreover we discuss the relation between rationality and categorical representability in codimension two for determinantal varieties.

Pure mathematicsGeneral MathematicsHomological projective dualitySemi-orthogonal decompositionsDeterminantal varieties01 natural sciencesDerived categoryMathematics - Algebraic GeometryMathematics::Algebraic GeometryMathematics::Category Theory0103 physical sciencesFOS: MathematicsProjective spaceCategory Theory (math.CT)0101 mathematicsAlgebraic Geometry (math.AG)Categorical variableMathematics::Symplectic GeometryPencil (mathematics)Projective varietyComputingMilieux_MISCELLANEOUSMathematicsDiscrete mathematicsDerived category010308 nuclear & particles physicsProjective varietiesComplex projective space010102 general mathematicsFano varietyMathematics - Category TheoryCodimension[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Rationality questions[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
researchProduct

Volumes transverses aux feuilletages d'efinissables dans des structures o-minimales

2003

Let Fλ be a family of codimension p foliations defined on a family Mλ of manifolds and let Xλ be a family of compact subsets of Mλ. Suppose that Fλ, Mλ and Xλ are definable in an o-minimal structure and that all leaves of Fλ are closed. Given a definable family Ωλ of differential p-forms satisfaying iZ Ωλ = 0 forany vector field Z tangent to Fλ, we prove that there exists a constant A > 0 such that the integral of on any transversal of Fλ intersecting each leaf in at most one point is bounded by A. We apply this result to prove that p-volumes of transverse sections of Fλ are uniformly bounded.

Pure mathematicsGeneral MathematicsMathematical analysisStructure (category theory)Structures o-minimalesTangentCodimensionTransversal (combinatorics)Bounded functionUniform boundednessIntégration de formes différentiellesVector fieldConstant (mathematics)Feuilletages réelsMathematics
researchProduct

Notions of Dirichlet problem for functions of least gradient in metric measure spaces

2019

We study two notions of Dirichlet problem associated with BV energy minimizers (also called functions of least gradient) in bounded domains in metric measure spaces whose measure is doubling and supports a (1, 1)-Poincaré inequality. Since one of the two notions is not amenable to the direct method of the calculus of variations, we construct, based on an approach of Juutinen and Mazón-Rossi–De León, solutions by considering the Dirichlet problem for p-harmonic functions, p>1, and letting p→1. Tools developed and used in this paper include the inner perimeter measure of a domain. Peer reviewed

Pure mathematicsGeneral MathematicsPoincaré inequalitycodimension 1 Hausdorff measure01 natural sciencesMeasure (mathematics)symbols.namesakeMathematics - Analysis of PDEsMathematics - Metric GeometryFOS: Mathematicsinner trace0101 mathematicsleast gradientMathematicsDirichlet problemDirichlet problemp-harmonicDirect method010102 general mathematicsA domainMetric Geometry (math.MG)perimeterfunction of bounded variationmetric measure spacePoincaré inequalityBounded functionMetric (mathematics)symbolsAnalysis of PDEs (math.AP)
researchProduct

The deformation multiplicity of a map germ with respect to a Boardman symbol

2001

We define the deformation multiplicity of a map germ f: (Cn, 0) → (Cp, 0) with respect to a Boardman symbol i of codimension less than or equal to n and establish a geometrical interpretation of this number in terms of the set of Σi points that appear in a generic deformation of f. Moreover, this number is equal to the algebraic multiplicity of f with respect to i when the corresponding associated ring is Cohen-Macaulay. Finally, we study how algebraic multiplicity behaves with weighted homogeneous map germs.

Pure mathematicsHomogeneousGeneral MathematicsMathematical analysisGermMultiplicity (mathematics)CodimensionEigenvalues and eigenvectorsMathematicsProceedings of the Royal Society of Edinburgh: Section A Mathematics
researchProduct

Image Milnor number and 𝒜 e -codimension for maps between weighted homogeneous irreducible curves

2019

Abstract Let (X, 0) ⊂ (ℂ n , 0) be an irreducible weighted homogeneous singularity curve and let f : (X, 0) → (ℂ2, 0) be a finite map germ, one-to-one and weighted homogeneous with the same weights of (X, 0). We show that 𝒜 e -codim(X, f) = μI (f), where the 𝒜 e -codimension 𝒜 e -codim(X, f) is the minimum number of parameters in a versal deformation and μI (f) is the image Milnor number, i.e. the number of vanishing cycles in the image of a stabilization of f.

Pure mathematicsHomogeneousImage (category theory)010102 general mathematics0103 physical sciences010307 mathematical physicsGeometry and TopologyCodimension0101 mathematics01 natural sciencesMilnor numberMathematicsAdvances in Geometry
researchProduct

Compactifying Torus Fibrations Over Integral Affine Manifolds with Singularities

2021

This is an announcement of the following construction: given an integral affine manifold B with singularities, we build a topological space X which is a torus fibration over B. The main new feature of the fibration X → B is that it has the discriminant in codimension 2.

Pure mathematicsMathematics::Algebraic GeometryDiscriminantFeature (computer vision)FibrationTorusAffine transformationCodimensionTopological spaceAffine manifoldMathematics::Symplectic GeometryMathematics
researchProduct

On the Asymptotics of Capelli Polynomials

2020

We present old and new results about Capelli polynomials, \(\mathbb {Z}_2\)-graded Capelli polynomials, Capelli polynomials with involution and their asymptotics.

Pure mathematicsMathematics::Quantum AlgebraInvolution (philosophy)CodimensionMathematics::Representation TheoryMathematics
researchProduct