Search results for "Codimension"
showing 10 items of 112 documents
Specht property for some varieties of Jordan algebras of almost polynomial growth
2019
Abstract Let F be a field of characteristic zero. In [25] it was proved that U J 2 , the Jordan algebra of 2 × 2 upper triangular matrices, can be endowed up to isomorphism with either the trivial grading or three distinct non-trivial Z 2 -gradings or by a Z 2 × Z 2 -grading. In this paper we prove that the variety of Jordan algebras generated by U J 2 endowed with any G-grading has the Specht property, i.e., every T G -ideal containing the graded identities of U J 2 is finitely based. Moreover, we prove an analogue result about the ordinary identities of A 1 , a suitable infinitely generated metabelian Jordan algebra defined in [27] .
Polynomial identities for the Jordan algebra of upper triangular matrices of order 2
2012
Abstract The associative algebras U T n ( K ) of the upper triangular matrices of order n play an important role in PI theory. Recently it was suggested that the Jordan algebra U J 2 ( K ) obtained by U T 2 ( K ) has an extremal behaviour with respect to its codimension growth. In this paper we study the polynomial identities of U J 2 ( K ) . We describe a basis of the identities of U J 2 ( K ) when the field K is infinite and of characteristic different from 2 and from 3. Moreover we give a description of all possible gradings on U J 2 ( K ) by the cyclic group Z 2 of order 2, and in each of the three gradings we find bases of the corresponding graded identities. Note that in the graded ca…
Graded polynomial identities and exponential growth
2009
Let $A$ be a finite dimensional algebra over a field of characteristic zero graded by a finite abelian group $G$. Here we study a growth function related to the graded polynomial identities satisfied by $A$ by computing the exponential rate of growth of the sequence of graded codimensions of $A$. We prove that the $G$-exponent of $A$ exists and is an integer related in an explicit way to the dimension of a suitable semisimple subalgebra of $A$.
On multiplicities of cocharacters for algebras with superinvolution
2021
Abstract In this paper we deal with finitely generated superalgebras with superinvolution, satisfying a non-trivial identity, whose multiplicities of the cocharacters are bounded by a constant. Along the way, we prove that the codimension sequence of such algebras is polynomially bounded if and only if their colength sequence is bounded by a constant.
Hurwitz spaces of quadruple coverings of elliptic curves and the moduli space of abelian threefolds A_3(1,1,4)
2005
We prove that the moduli space A_3(1,1,4) of polarized abelian threefolds with polarization of type (1,1,4) is unirational. By a result of Birkenhake and Lange this implies the unirationality of the isomorphic moduli space A_3(1,4,4). The result is based on the study the Hurwitz space H_{4,n}(Y) of quadruple coverings of an elliptic curve Y simply branched in n points. We prove the unirationality of its codimension one subvariety H^{0}_{4,A}(Y) which parametrizes quadruple coverings ��:X --> Y with Tschirnhausen modules isomorphic to A^{-1}, where A\in Pic^{n/2}Y, and for which ��^*:J(Y)--> J(X) is injective. This is an analog of the result of Arbarello and Cornalba that the Hurwitz s…
Stabilization of the cohomology of thickenings
2016
For a local complete intersection subvariety $X=V({\mathcal I})$ in ${\mathbb P}^n$ over a field of characteristic zero, we show that, in cohomological degrees smaller than the codimension of the singular locus of $X$, the cohomology of vector bundles on the formal completion of ${\mathbb P}^n$ along $X$ can be effectively computed as the cohomology on any sufficiently high thickening $X_t=V({\mathcal I^t})$; the main ingredient here is a positivity result for the normal bundle of $X$. Furthermore, we show that the Kodaira vanishing theorem holds for all thickenings $X_t$ in the same range of cohomological degrees; this extends the known version of Kodaira vanishing on $X$, and the main new…
The algebraic structure of cohomological field theory
1993
Abstract The algebraic foundation of cohomological field theory is presented. It is shown that these theories are based upon realizations of an algebra which contains operators for both BRST and vector supersymmetry. Through a localization of this algebra, we construct a theory of cohomological gravity in arbitrary dimensions. The observables in the theory are polynomial, but generally non-local operators, and have a natural interpretation in terms of a universal bundle for gravity. As such, their correlation functions correspond to cohomology classes on moduli spaces of Riemannian connections. In this uniformization approach, different moduli spaces are obtained by introducing curvature si…
Trace Identities on Diagonal Matrix Algebras
2020
Let Dn be the algebra of n × n diagonal matrices. On such an algebra it is possible to define very many trace functions. The purpose of this paper is to present several results concerning trace identities satisfied by this kind of algebras.
Global properties of codimension two spacelike submanifolds in Minkowski space
2009
Abstract We consider codimension two spacelike submanifolds with a parallel normal field (i.e. vanishing normal curvature) in Minkowski space. We use the analysis of their contacts with hyperplanes and hyperquadrics in order to get some global information on them. As a consequence we obtain new versions of Carathéodory's and Loewner's conjectures on spacelike surfaces in 4-dimensional Minkowski space and 4-flattenings theorems for closed spacelike curves in 3-dimensional Minkowski space.
Removable sets for intrinsic metric and for holomorphic functions
2019
We study the subsets of metric spaces that are negligible for the infimal length of connecting curves; such sets are called metrically removable. In particular, we show that every totally disconnected set with finite Hausdorff measure of codimension 1 is metrically removable, which answers a question raised by Hakobyan and Herron. The metrically removable sets are shown to be related to other classes of "thin" sets that appeared in the literature. They are also related to the removability problems for classes of holomorphic functions with restrictions on the derivative.