Search results for "Cohen-Macaulay"
showing 7 items of 7 documents
The minimal free resolution of fat almost complete intersections in ℙ1 x ℙ1
2017
AbstractA current research theme is to compare symbolic powers of an ideal I with the regular powers of I. In this paper, we focus on the case where I = IX is an ideal deûning an almost complete intersection (ACI) set of points X in ℙ1 × ℙ1. In particular, we describe a minimal free bigraded resolution of a non-arithmetically Cohen-Macaulay (also non-homogeneous) set 𝒵 of fat points whose support is an ACI, generalizing an earlier result of Cooper et al. for homogeneous sets of triple points. We call 𝒵 a fat ACI.We also show that its symbolic and ordinary powers are equal, i.e, .
Rivestimenti di varietà algebriche contenuti in fibrati di piani proiettivi
Tower sets and other configurations with the Cohen-Macaulay property
2014
Abstract Some well-known arithmetically Cohen–Macaulay configurations of linear varieties in P r as k-configurations, partial intersections and star configurations are generalized by introducing tower schemes. Tower schemes are reduced schemes that are a finite union of linear varieties whose support set is a suitable finite subset of Z + c called tower set. We prove that the tower schemes are arithmetically Cohen–Macaulay and we compute their Hilbert function in terms of their support. Afterwards, since even in codimension 2 not every arithmetically Cohen–Macaulay squarefree monomial ideal is the ideal of a tower scheme, we slightly extend this notion by defining generalized tower schemes …
On the arithmetically Cohen-Macaulay property for sets of points in multiprojective spaces
2017
We study the arithmetically Cohen-Macaulay (ACM) property for finite sets of points in multiprojective spaces, especially ( P 1 ) n (\mathbb P^1)^n . A combinatorial characterization, the ( ⋆ ) (\star ) -property, is known in P 1 × P 1 \mathbb P^1 \times \mathbb P^1 . We propose a combinatorial property, ( ⋆ s ) (\star _s) with 2 ≤ s ≤ n 2\leq s\leq n , that directly generalizes the ( ⋆ ) (\star ) -property to ( P 1 ) n (\mathbb P^1)^n for larger n n . We show that X X is ACM if and only if it satisfies the ( ⋆ n ) (\star _n) -property. The main tool for several of our results is an extension to the multiprojective setting of certain liaison methods in projective space.
Special arrangements of lines: Codimension 2 ACM varieties in P 1 × P 1 × P 1
2019
In this paper, we investigate special arrangements of lines in multiprojective spaces. In particular, we characterize codimension 2 arithmetically Cohen–Macaulay (ACM) varieties in [Formula: see text], called varieties of lines. We also describe their ACM property from a combinatorial algebra point of view.
Multiprojective spaces and the arithmetically Cohen-Macaulay property
2019
AbstractIn this paper we study the arithmetically Cohen-Macaulay (ACM) property for sets of points in multiprojective spaces. Most of what is known is for ℙ1× ℙ1and, more recently, in (ℙ1)r. In ℙ1× ℙ1the so called inclusion property characterises the ACM property. We extend the definition in any multiprojective space and we prove that the inclusion property implies the ACM property in ℙm× ℙn. In such an ambient space it is equivalent to the so-called (⋆)-property. Moreover, we start an investigation of the ACM property in ℙ1× ℙn. We give a new construction that highlights how different the behavior of the ACM property is in this setting.
The ACM property for unions of lines in P1×P2
2021
This paper examines the Arithmetically Cohen-Macaulay (ACM) property for certain codimension 2 varieties in P1×P2 called sets of lines in P1×P2 (not necessarily reduced). We discuss some obstacles to finding a general characterization. We then consider certain classes of such curves, and we address two questions. First, when are they themselves ACM? Second, in a non-ACM reduced configuration, is it possible to replace one component of a primary (prime) decomposition by a suitable power (i.e. to “fatten” one line) to make the resulting scheme ACM? Finally, for our classes of such curves, we characterize the locally Cohen-Macaulay property in combinatorial terms by introducing the definition …