Search results for "Coherence length"
showing 10 items of 30 documents
Properties of dirty two-band superconductors with repulsive interband interaction: Normal modes, length scales, vortices, and magnetic response
2018
Disorder in two-band superconductors with repulsive interband interaction induces a frustrated competition between the phase-locking preferences of the various potential and kinetic terms. This frustrated interaction can result in the formation of an $s+is$ superconducting state, that breaks the time-reversal symmetry. In this paper we study the normal modes and their associated coherence lengths in such materials. We especially focus on the consequences of the soft modes stemming from the frustration and time-reversal-symmetry breakdown. We find that two-bands superconductors with such impurity-induced frustrated interactions display a rich spectrum of physical properties that are absent i…
Influence of dispersion on the resonant interaction between three incoherent waves
2005
We study the influence of group-velocity dispersion (or diffraction) on the coherence properties of the parametric three-wave interaction driven from an incoherent pump wave. We show that, under certain conditions, the incoherent pump may efficiently amplify a signal wave with a high degree of coherence, in contrast with the usual kinetic description of the incoherent three-wave interaction. The group-velocity dispersion is shown to be responsible for a spectral filtering process, in which the coherence of the generated signal increases, as the coherence of the pump wave decreases. As a result, the coherence acquired by the signal in the presence of an incoherent pump, is higher than that a…
Experimental evidence of X-shaped spatiotemporal coherence of superfluorescence radiation
2006
Considering the parametric generation process in a quadratic nonlinear crystal, we report the experimental observation of optical waves characterized by a X-shaped spatiotemporal coherence, i.e. a coherence skewed along spatiotemporal trajectories.
Exploiting Coherence in Nonlinear Spin-Superfluid Transport
2017
We show how the interference between superfluid spin currents can endow spin circuits with coherent logic functionality. While the hydrodynamic aspects of the linear-response collective spin transport obviate interference features, we focus on the nonlinear regime, where the critical supercurrent is sensitive to the phase accumulated by the condensate in a loop geometry. We propose to control this phase by electrical gating, tuning the spin-condensate coherence length. The nonlinear aspects of the spin superfluidity thus naturally lend themselves to the construction of logic gates, uniquely exploiting the coherence of collective spin currents. Vice versa, this functionality can be used to r…
Coherent and incoherent electron transport along a disordered chain
1992
Abstract The Landauer-Buttiker approach is used to describe electron transport along a chain of scatterers which allow elastic as well as inelastic processes. The inelastic scattering takes place via side branches, coupling the chain to electron reservoirs which serve as a heat bath. In this approach, coherent and dissipative transport can be treated in a unified manner, and the suppression of quantum coherence effects for increasing coupling to the heat bath can be described. The influence of disorder on the transmission properties can be characterized by an appropriate coherence length in addition to the decay of the coherence due to dissipation.
Resolution-enhanced optical coherence tomography based on classical intensity interferometry.
2009
We propose a fourth-order interference scheme for optical coherence tomography operating with broadband incoherent (or quasi-incoherent) light. It is shown that using this proposal, an axial resolution improvement by a factor of 2 and a better sensitivity for weakly reflecting samples are obtained than with the standard second-order correlation scheme. From a practical perspective, we suggest the use of broadband Q-switched pulses and performing ultrafast intensity correlation with a nonlinear crystal. The global performance of our proposal is illustrated by means of numerical simulations
Superfluid properties of the inner crust of neutron stars
2011
We investigated the superfluid properties of the inner crust of neutron stars, solving the Hartree-Fock-Bogoliubov equations in spherical Wigner-Seitz cells. Using realistic two-body interactions in the pairing channel, we studied in detail the Cooper-pair and the pairing-field spatial properties, together with the effect of the proton clusters on the neutron pairing gap. Calculations with effective pairing interactions are also presented, showing significant discrepancies with the results obtained with realistic pairing forces. At variance with recent studies on finite nuclei, the neutron coherence length is found to depend on the strength of the pairing interaction, even inside the nucleu…
Coherent and incoherent spectral broadening in a photonic crystal fiber.
2007
The coherence of the spectral broadening process is the key requisite for the application of supercontinua in frequency combs. We investigate the coherence of two subsequent supercontinuum pulses created in a photonic crystal fiber pumped by a femtosecond laser. We measure Young interference fringes from a Michelson-type interferometer at different wavelengths of the output spectrum and analyze their dependence on pump intensity and polarization. The visibility of these fringes is a direct measure of the coherence of the spectral broadening processes.
Two-dimensional temporal coherence coding for super resolved imaging
2009
In this paper, we present an approach that can be used for transmission of 2D spatial information through space-limited systems capable of transmitting even only a single spatial pixel. The input 2D object is illuminated with temporally incoherent illumination. The axial coherence length is very short and it equals only a few microns. Attached to the input object spatial random phase mask generates different axial shift for every pixel of the input. The temporal delays of the encoding (axial shifts) of every pixel are longer than the coherence length of the illuminating source. Therefore no temporal correlation exists between the various pixels of the input. A lens combines all spatial pixe…
Nonlocality in superconducting microstructures
2001
We discuss experimental evidence of nonlocality in electron transport of small structures. It is shown that for superconductors reasonable agreement with experiment can be achieved by assuming exponential decay of the nonlocal interaction ∝ exp(—Lξ), where L is the distance between the interacting points and ξ is the correlation length. ξ is associated with the Ginzburg - Landau coherence length ξGL.