Search results for "Coloni"

showing 10 items of 1017 documents

Effects of resveratrol analogs on cell cycle progression, cell cycle associated proteins and 5fluoro-uracil sensitivity in human derived colon cancer…

2009

International audience; Epidemiological studies suggested that trans-resveratrol, a wine grape component, could prevent malignant tumor development. This compound also demonstrated cytostatic and cytotoxic effects on tumor cells in vitro. To obtain trans-resveratrol derivatives with a better cellular uptake and enhanced antiproliferative effects, we synthesized a triacetate derivative as well as an oligomer, epsilon-viniferin and its acetylated form, epsilon-viniferin penta-acetate. We also obtained vineatrol, a wine grape shoot extract that associates several polyphenols that may act synergistically, including trans-resveratrol and epsilon-viniferin. We show here that resveratrol triacetat…

Cancer ResearchCyclin AFluorescent Antibody TechniqueCell Cycle ProteinsMESH: Cell CycleMESH: Flow CytometryMESH : Blotting WesternResveratrolmedicine.disease_causeWine grapeMESH: Drug SynergismImmunoenzyme Techniqueschemistry.chemical_compoundMESH: PhenolsMESH : Cell Cycle ProteinsMESH : Tumor Cells CulturedMESH: StilbenesStilbenesTumor Cells CulturedMESH : Cell ProliferationMESH: Fluorescent Antibody TechniqueMESH: Antimetabolites AntineoplasticbiologyKinaseMESH : Antimetabolites AntineoplasticCell Cyclefood and beveragesDrug SynergismCell cycleFlow CytometryMESH : Colonic NeoplasmsOncologyBiochemistryColonic NeoplasmsMESH : FluorouracilFluorouracilMESH : PhenolsAntimetabolites AntineoplasticMESH : Drug SynergismMESH : Flow CytometryBlotting WesternMESH : ImmunoprecipitationMESH : StilbenesMESH: Cell Cycle ProteinsPhenolsMESH : Immunoenzyme TechniquesMESH: Cell ProliferationMESH : Cell Cycle[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologymedicineHumansImmunoprecipitationMESH: Blotting Western[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Tumor Cells CulturedKinase activityMESH: Immunoenzyme Techniques[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyBenzofuransCell ProliferationMESH: Colonic NeoplasmsMESH: HumansMESH : BenzofuransMESH: ImmunoprecipitationMESH : HumansMESH: BenzofuransMESH : Fluorescent Antibody TechniquechemistryResveratrolCell culturebiology.proteinCarcinogenesisMESH: Fluorouracil
researchProduct

The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation.

2010

Abstract Colon cancer stem cells (CSC) can be identified with AC133, an antibody that detects an epitope on CD133. However, recent evidence suggests that expression of CD133 is not restricted to CSCs, but is also expressed on differentiated tumor cells. Intriguingly, we observed that detection of the AC133 epitope on the cell surface decreased upon differentiation of CSC in a manner that correlated with loss of clonogenicity. However, this event did not coincide with a change in CD133 promoter activity, mRNA, splice variant, protein expression, or even cell surface expression of CD133. In contrast, we noted that with CSC differentiation, a change occured in CD133 glycosylation. Thus, AC133 …

Cancer ResearchGlycosylationGlycosylationCellular differentiationCellAC 133 EpitopeDown-RegulationMice SCIDEpitopechemistry.chemical_compoundEpitopesMiceCancer stem cellAntigens CDMice Inbred NODProminin-1medicineTumor Cells CulturedAnimalsHumansProtein IsoformsAC133 AntigenRNA MessengerPromoter Regions GeneticneoplasmsGlycoproteinsbiologyCell DifferentiationMolecular biologycarbohydrates (lipids)Gene Expression Regulation Neoplasticmedicine.anatomical_structureOncologychemistryembryonic structuresColonic Neoplasmsbiology.proteinNeoplastic Stem CellsAntibodyStem cellPeptidesCancer research
researchProduct

Multivalent DR5 peptides activate the TRAIL death pathway and exert tumoricidal activity.

2010

Abstract Ongoing clinical trials are exploring anticancer approaches based on signaling by TRAIL, a ligand for the cell death receptors DR4 and DR5. In this study, we report on the selective apoptotic effects of multivalent DR5 binding peptides (TRAILmim/DR5) on cancer cells in vitro and in vivo. Surface plasmon resonance revealed up to several thousand-fold increased affinities of TRAILmim/DR5-receptor complexes on generation of divalent and trivalent molecules, the latter of which was achieved with a conformationally restricted adamantane core. Notably, only multivalent molecules triggered a substantial DR5-dependent apoptotic response in vitro. In tumor models derived from human embryoni…

Cancer ResearchMembrane transport and intracellular motility [NCMLS 5]Apoptosis[CHIM.THER]Chemical Sciences/Medicinal Chemistry[ SDV.CAN ] Life Sciences [q-bio]/CancerTNF-Related Apoptosis-Inducing LigandMice0302 clinical medicineStilbenesReceptorCells Cultured0303 health sciencesDrug Synergism[ CHIM.THER ] Chemical Sciences/Medicinal ChemistryLigand (biochemistry)Tumor Burden3. Good healthMitochondrial medicine [IGMD 8]Oncology030220 oncology & carcinogenesisColonic NeoplasmsFemaleOligopeptidesSignal Transductionmedicine.medical_specialtyProgrammed cell deathBlotting WesternMolecular Sequence DataMice Nude[SDV.CAN]Life Sciences [q-bio]/CancerCell Line03 medical and health sciencesIn vivoInternal medicinemedicineAnimalsHumansAmino Acid Sequence030304 developmental biologybusiness.industrySurface Plasmon ResonanceHCT116 CellsAntineoplastic Agents PhytogenicXenograft Model Antitumor AssaysIn vitroReceptors TNF-Related Apoptosis-Inducing LigandEndocrinologyResveratrolCell cultureApoptosisCancer cellCancer researchbusiness
researchProduct

WIN induces apoptotic cell death in human colon cancer cells through a block of autophagic flux dependent on PPARγ down-regulation.

2014

Cannabinoids have been reported to possess anti-tumorigenic activity in cancer models although their mechanism of action is not well understood. Here, we show that the synthetic cannabinoid WIN55,212-2 (WIN)-induced apoptosis in colon cancer cell lines is accompanied by endoplasmic reticulum stress induction. The formation of acidic vacuoles and the increase in LC3-II protein indicated the involvement of autophagic process which seemed to play a pro-survival role against the cytotoxic effects of the drug. However, the enhanced lysosomal membrane permeabilization (LMP) blocked the autophagic flux after the formation of autophagosomes as demonstrated by the accumulation of p62 and LC3, two ma…

Cancer ResearchMorpholinesClinical BiochemistryPharmaceutical ScienceDown-RegulationAntineoplastic AgentsApoptosisBiologyNaphthalenesDownregulation and upregulationSettore BIO/10 - BiochimicaCell Line TumormedicineAutophagyGene silencingHumansViability assayPharmacologyEndoplasmic reticulumBiochemistry (medical)AutophagyCannabinoids PPARγ ER stress autophagy/apoptosis interplay colon carcinoma cellsCell BiologyEndoplasmic Reticulum StressCell biologyBenzoxazinesMitochondriaPPAR gammaMechanism of actionApoptosisColonic NeoplasmsUnfolded protein responsemedicine.symptomSignal TransductionApoptosis : an international journal on programmed cell death
researchProduct

Redistribution of CD95, DR4 and DR5 in rafts accounts for the synergistic toxicity of resveratrol and death receptor ligands in colon carcinoma cells.

2004

The natural phytoalexin resveratrol (3, 5, 4'-trihydroxystilbene) exhibits both chemopreventive and antitumor activities through a variety of mechanisms. We have shown previously that resveratrol-induced apoptosis of a human colon cancer cell line involved the redistribution of CD95 (Fas/Apo-1) into lipid rafts. Here, we show that, in colon cancer cells that resist to resveratrol-induced apoptosis, the polyphenol also induces a redistribution of death receptors into lipid rafts. This effect sensitizes these tumor cells to death receptor-mediated apoptosis. In resveratrol-treated cells, tumor necrosis factor (TNF), anti-CD95 antibodies and TNF-related apoptosis-inducing ligand (TRAIL) activa…

Cancer ResearchNystatinTime FactorsApoptosisResveratrolmedicine.disease_causeLigandsReceptors Tumor Necrosis FactorTNF-Related Apoptosis-Inducing Ligandchemistry.chemical_compoundStilbenesReceptorLipid raftCaspaseMembrane GlycoproteinsbiologyFas receptorFlow CytometryLipidsMitochondriaProto-Oncogene Proteins c-bcl-2CaspasesColonic Neoplasmslipids (amino acids peptides and proteins)Tumor necrosis factor alphaSignal Transductionmedicine.medical_specialtyBlotting WesternTransfectionMembrane MicrodomainsInternal medicineCell Line TumorGeneticsmedicineHumansfas ReceptorMolecular BiologyTumor Necrosis Factor-alphaCarcinomaLipid MetabolismAntineoplastic Agents PhytogenicReceptors TNF-Related Apoptosis-Inducing LigandEndocrinologychemistryApoptosisResveratrolCancer researchbiology.proteinCarcinogenesisApoptosis Regulatory ProteinsOncogene
researchProduct

Mast Cells Infiltrating Inflamed or Transformed Gut Alternatively Sustain Mucosal Healing or Tumor Growth.

2015

Abstract Mast cells (MC) are immune cells located next to the intestinal epithelium with regulatory function in maintaining the homeostasis of the mucosal barrier. We have investigated MC activities in colon inflammation and cancer in mice either wild-type (WT) or MC-deficient (KitW-sh) reconstituted or not with bone marrow-derived MCs. Colitis was chemically induced with dextran sodium sulfate (DSS). Tumors were induced by administering azoxymethane (AOM) intraperitoneally before DSS. Following DSS withdrawal, KitW-sh mice showed reduced weight gain and impaired tissue repair compared with their WT littermates or KitW-sh mice reconstituted with bone marrow-derived MCs. MCs were localized i…

Cancer ResearchPathologyColorectal cancerCell CountAnimals; Animals Congenic; Azoxymethane; Carcinoma; Cell Count; Cell Transformation Neoplastic; Cells Cultured; Colitis; Colonic Neoplasms; Dextran Sulfate; Epithelial Cells; Humans; Inflammatory Bowel Diseases; Interleukin-33; Intestinal Mucosa; Mast Cells; Mice; Mice Inbred C57BL; Mice Knockout; Models Biological; Proto-Oncogene Proteins c-kit; Receptors Interleukin; Regeneration; Serine Endopeptidases; Species Specificity; Specific Pathogen-Free Organisms; Cancer Research; Oncology; Medicine (all)chemistry.chemical_compoundMiceAnimals CongenicMast CellMast CellsIntestinal MucosaCells CulturedMice KnockoutColonic NeoplasmMedicine (all)Dextran SulfateSerine EndopeptidasesColitisIntestinal epitheliumSpecific Pathogen-Free OrganismsSerine EndopeptidaseProto-Oncogene Proteins c-kitCell Transformation NeoplasticOncologyColonic Neoplasmsmedicine.symptomHumanmedicine.medical_specialtyAzoxymethaneInflammationModels BiologicalImmune systemSpecies SpecificitymedicineSpecific Pathogen-Free OrganismAnimalsHumansRegenerationColitisEpithelial CellAnimalAzoxymethanebusiness.industryInflammatory Bowel DiseaseCarcinomaEpithelial CellsReceptors Interleukinmedicine.diseaseInflammatory Bowel DiseasesInterleukin-33Interleukin-1 Receptor-Like 1 ProteinMice Inbred C57BLchemistrybusinessWound healingColitiHomeostasisCancer research
researchProduct

Mechanisms of tumor invasion: evidence from in vivo observations.

1985

The major mechanisms of tumor invasion in vivo are discussed in the present review. A special emphasis is placed on tumor dedifferentiation which has proved to be of paramount importance for the invasion process. Based on in vivo observations obtained from various human and animal tumors a concept for the mechanism of tumor invasion is proposed which mainly comprises the following basic events: the first and essential step in tumor invasion is the tumor dedifferentiation and dissociation at the invasion front. This apparently temporary and reversible process mobilizes the tumor cells out of the main tumor bulk and enables them to invade the host tissue by active locomotion. This mechanism i…

Cancer ResearchPathologymedicine.medical_specialtyCell divisionColonCellular differentiationBiologyHost tissueBasement MembraneExtracellular matrixIn vivoCell MovementmedicineAnimalsEdemaHumansNeoplasm InvasivenessProcess (anatomy)Cells CulturedDimethylhydrazinesCell DifferentiationMuscle SmoothCell biology12-DimethylhydrazineExtracellular MatrixNeoplasm ProteinsRatsOxygenInterstitial edemaIntercellular JunctionsOncologyColonic NeoplasmsAtrophyIntracellularCell DivisionPeptide HydrolasesCancer metastasis reviews
researchProduct

Metabolic Imaging in Microregions of Tumors and Normal Tissues With Bioluminescence and Photon Counting

1988

A method has been developed for metabolic imaging on a microscopic level in tumors, tumor spheroids, and normal tissues. The technique makes it possible to determine the spatial distribution of glucose, lactate, and ATP in absolute terms at similar locations within tissues or cell aggregates. The substrate distributions are registered in serial cryostat sections from tissue cryobiopsies or from frozen spheroids with the use of bioluminescence reactions. The light emission is measured directly by a special imaging photon counting system enabling on-line image analysis. The technique has been applied to human breast cancer xenografts, to spheroids originating from a human colon adenocarcinoma…

Cancer ResearchPathologymedicine.medical_specialtyCellBiologyAdenosine TriphosphateNeoplasmsmedicineMedical imagingAnimalsHumansBioluminescenceLarge intestineLactic AcidRadionuclide ImagingRadiationMusclesSpheroidMammary Neoplasms Experimentalmedicine.diseasePhoton countingRatsGlucosemedicine.anatomical_structureOncologyColonic NeoplasmsLuminescent MeasurementsLactatesBiophysicsAdenocarcinomaFemaleLight emissionJNCI Journal of the National Cancer Institute
researchProduct

Comparative study of human colonic tumor-derived endothelial cells (HCTEC) and normal colonic microvascular endothelial cells (HCMEC): Hypoxia-induce…

2009

Colorectal carcinoma growth and progression is dependent on the vasculature of the tumor microenvironment. Tumor-derived endothelial cells differ functionally from their normal counterpart. For this reason we isolated microvascular endothelial cells from human colon cancer tissue (HCTEC) and compared them with endothelial cells from normal colonic tissue (HCMEC) of the same donor. Since hypoxia is a universal hallmark of carcinomas, we examined its effects on HCTEC of five patients in comparison with the corresponding HCMEC, with respect to the secretion of the soluble form of the two important vascular endothelial growth factor (VEGF) receptors, VEGFR-1 and -2. After dissociation by dispas…

Cancer ResearchPathologymedicine.medical_specialtyEndotheliumColonEnzyme-Linked Immunosorbent AssayCell SeparationBiologychemistry.chemical_compoundmedicineHumansCells CulturedTumor microenvironmentVascular Endothelial Growth Factor Receptor-1OncogeneMicrocirculationEndothelial CellsGeneral MedicineVascular Endothelial Growth Factor Receptor-2Cell HypoxiaEndothelial stem cellVascular endothelial growth factormedicine.anatomical_structureOncologychemistryApoptosisTumor progressionColonic NeoplasmsCancer researchTumor necrosis factor alphaOncology Reports
researchProduct

Aurora-A Transcriptional Silencing and Vincristine Treatment Show a Synergistic Effect in Human Tumor Cells

2008

Aurora-A is a centrosome-associated serine/threonine kinase that is overexpressed in multiple types of human tumors. Primarily, Aurora-A functions in centrosome maturation and mitotic spindle assembly. Overexpression of Aurora-A induces centrosome amplification and G 2 /M cell cycle progression. Recently, it was observed that overexpression of Aurora-A renders cells resistant to cisplatin (CDDP)-, etoposide-, and paclitaxel-induced apoptosis.Our results indicate that already in initial stages of cancer progression Aurora-A overexpression could have a major role in inducing supernumerary centrosomes and aneuploidy, as shown by immunohistochemistry on tissue sections from various stages of hu…

Cancer ResearchPathologymedicine.medical_specialtyTranscription GeneticApoptosismacromolecular substancesProtein Serine-Threonine KinasesBiologyTransfectionPLK1Aurora KinasesRNA interferenceCell Line TumormedicineHumansGene silencingGene SilencingRNA Small InterferingMitotic catastropheCentrosomeCisplatinCarcinomaCell CycleDrug SynergismAuroraA/stk15centrosome amplificationAneuploidy CINGeneral MedicineCell cycleAneuploidyAntineoplastic Agents PhytogenicGene Expression Regulation NeoplasticSettore BIO/18 - Geneticaenzymes and coenzymes (carbohydrates)OncologyVincristineCentrosomeColonic Neoplasmsembryonic structuresCancer cellCancer researchbiological phenomena cell phenomena and immunityHeLa Cellsmedicine.drugOncology Research Featuring Preclinical and Clinical Cancer Therapeutics
researchProduct