Search results for "Color constancy"
showing 10 items of 13 documents
Color constancy in dermatoscopy with smartphone
2017
The recent spread of cheap dermatoscopes for smartphones can empower patients to acquire images of skin lesions on their own and send them to dermatologists. Since images are acquired by different smartphone cameras under unique illumination conditions, the variability in colors is expected. Therefore, the mobile dermatoscopic systems should be calibrated in order to ensure the color constancy in skin images. In this study, we have tested a dermatoscope DermLite DL1 basic, attached to Samsung Galaxy S4 smartphone. Under the controlled conditions, jpeg images of standard color patches were acquired and a model between an unknown device-dependent RGB and a device independent Lab color space h…
Colour Constancy in Goldfish and Man: Influence of Surround Size and Lightness
2002
Colour constancy was investigated by using a series of 10 simultaneously presented surface colours ranging in small steps from green through gray to red – purple. Goldfish were trained to select one medium test field when the entire setup was illuminated with white light. In the tests, either red or green illumination was used. Colour constancy, as inferred from the choice behaviour, was perfect under green illumination when the test fields were presented on a gray or a white background, but imperfect on a black background. Under red illumination and a white background, however, colour constancy was overcompensated. Here, a colour contrast effect was observed. The influence of background l…
Color and lightness constancy in different perceptual tasks
1998
Color and lightness constancy with respect to changing illumination was studied with three different perceptual tasks: ranking of colored papers according (1) to their lightness and (2) to their chromatic similarity in photopic, mesopic, and scotopic states of adaptation, and (3) recognition of remembered colored papers after changes of illumination in photopic vision. Constancy was found in the second task, only. Excitations of light receptors and luminance channels were computed to simulate the empirical rank orders. Results of the first task can be predicted with the hypothesis that luminance channels are activated, if lightness is asked for. Sequences arranged with respect to chromatic …
Color constancy in goldfish: the limits
2000
Color constancy was investigated in behavioral training experiments on colors ranging from blue to yellow, located in the color space close to Planck's locus representing the main changes in natural skylight. Two individual goldfish were trained to peck at a test field of medium hue out of a series of 13-15 yellowish and bluish test fields presented simultaneously on a black background. During training the tank in which the fish were swimming freely was illuminated with white light. Correct choices were rewarded with food. During the tests differently saturated yellow or blue illumination was used. The degree of color constancy was inferred from the choice behavior under these illuminations…
Recognition of polychromatic three-dimensional objects
2004
We propose to use optical multichannel correlation in various chromatic systems to obtain a setup for recognition of polychromatic three-dimensional (3-D) objects based on Fourier-transform profilometry. Because red-green-blue color components are not able to split the luminance information of objects in a defined component, when the 3-D objects are brighter than the reference objects the correlation result gives false alarms. We demonstrate that it is possible to use different color spaces that can split luminance from chromatic information to yield adequate recognition of polychromatic 3-D objects. We show experimental results that prove the utility of the proposed method.
Improving color correction across camera and illumination changes by contextual sample selection
2012
International audience; In many tasks of machine vision applications, it is important that recorded colors remain constant, in the real world scene, even under changes of the illuminants and the cameras. Contrary to the human vision system, a machine vision system exhibits inadequate adaptability to the variation of lighting conditions. Automatic white bal- ance control available in commercial cameras is not sufficient to pro- vide reproducible color classification. We address this problem of color constancy on a large image database acquired with varying digi- tal cameras and lighting conditions. A device-independent color repre- sentation may be obtained by applying a chromatic adaptation…
Modelling the appearance of chromatic environment using hyperspectral imaging
2013
Color of objects is a spectral composition of incident light source, reflection properties of the object itself, and spectral tuning of the eye. Light sources with different spectral characteristics can produce metameric representation of color; however most variable in this regard is vision. Pigments of color vision are continuously bleached by different stimuli and optical density of the pigment is changed, while continuous conditions provide an adaptation and perception of white. Special cases are color vision deficiencies which cover almost 8 % of male population in Europe. Hyperspectral imaging allows obtaining the spectra of the environment and modelling the performance of the dichrom…
Photoreceptors, lightness constancy and color vision.
1986
Color Vision 2020: Introduction by the feature editors
2020
Accuracy of an Affordable Smartphone-Based Teledermoscopy System for Color Measurements in Canine Skin
2020
Quality smartphone cameras and affordable dermatoscopes have enabled teledermoscopy to become a popular medical and veterinary tool for analyzing skin lesions such as melanoma and erythema. However, smartphones acquire images in an unknown RGB color space, which prevents a standardized colorimetric skin analysis. In this work, we supplemented a typical veterinary teledermoscopy system with a conventional color calibration procedure, and we studied two mid-priced smartphones in evaluating native and erythematous canine skin color. In a laboratory setting with the ColorChecker, the teledermoscopy system reached CIELAB-based color differences &Delta