Search results for "Commutative algebra"

showing 10 items of 127 documents

A numerical property of Hilbert functions and lex segment ideals

2017

We introduce the fractal expansions, sequences of integers associated to a number. We show that these sequences characterize the Osequences and encode some information about lex segment ideals. Moreover, we introduce numerical functions called fractal functions, and we use them to solve the open problem of the classification of the Hilbert functions of any bigraded algebra.

13F20 13A15 13D40Settore MAT/02 - AlgebraBigraded algebraLex segment idealMathematics::Commutative AlgebraHilbert functionFOS: MathematicsSettore MAT/03 - GeometriaCommutative Algebra (math.AC)Mathematics - Commutative AlgebraBigraded algebra Hilbert function Lex segment idealBigraded algebra; Hilbert function; Lex segment ideal
researchProduct

On the Betti numbers of three fat points in P1 × P1

2019

In these notes we introduce a numerical function which allows us to describe explicitly (and nonrecursively) the Betti numbers, and hence, the Hilbert function of a set Z of three fat points whose support is an almost complete intersection (ACI) in P1 × P1 . A nonrecursively formula for the Betti numbers and the Hilbert function of these configurations is hard to give even for the corresponding set of five points on a special support in P2 and we did not find any kind of this result in the literature. Moreover, we also give a criterion that allows us to characterize the Hilbert functions of these special set of fat points.

13F20Fat points Hilbert functions Multiprojective spaces13A15Fat pointsMathematics - Commutative Algebra13D40Mathematics - Algebraic GeometrySettore MAT/02 - AlgebraFat points; Hilbert functions; Multiprojective spacesMultiprojective spacesSettore MAT/03 - GeometriaMathematics - Algebraic Geometry; Mathematics - Algebraic Geometry; Mathematics - Commutative Algebra; 13F20 13A15 13D40 14M0514M05Hilbert functions
researchProduct

OPERADS AND JET MODULES

2005

Let $A$ be an algebra over an operad in a cocomplete closed symmetric monoidal category. We study the category of $A$-modules. We define certain symmetric product functors of such modules generalising the tensor product of modules over commutative algebras, which we use to define the notion of a jet module. This in turn generalises the notion of a jet module over a module over a classical commutative algebra. We are able to define Atiyah classes (i.e. obstructions to the existence of connections) in this generalised context. We use certain model structures on the category of $A$-modules to study the properties of these Atiyah classes. The purpose of the paper is not to present any really de…

14F10Pure mathematicsFunctorPhysics and Astronomy (miscellaneous)Quantum algebraSymmetric monoidal category18G55Mathematics::Algebraic TopologyClosed monoidal categoryAlgebraMathematics - Algebraic GeometryTensor productMathematics::K-Theory and Homology18D50Mathematics::Category TheoryMathematics - Quantum AlgebraFOS: Mathematics18D50; 18G55; 13N15; 14F10Quantum Algebra (math.QA)Tensor product of modulesCommutative algebraAlgebraic Geometry (math.AG)Commutative property13N15MathematicsInternational Journal of Geometric Methods in Modern Physics
researchProduct

Moduli spaces of rank two aCM bundles on the Segre product of three projective lines

2016

Let P^n be the projective space of dimension n on an algebraically closed field of characteristic 0 and F be the image of the Segre embedding of P^1xP^1xP^1 inside P^7. In the present paper we deal with the moduli spaces of locally free sheaves E on F of rank 2 with h^i(F,E(t))=0 for i=1,2 and each integer t.

14J60 14J45 14D20[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]Rank (differential topology)Commutative Algebra (math.AC)01 natural sciences[ MATH.MATH-AC ] Mathematics [math]/Commutative Algebra [math.AC]CombinatoricsMathematics - Algebraic GeometryMathematics::Algebraic Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsProjective testAlgebraic Geometry (math.AG)MathematicsAlgebra and Number TheoryImage (category theory)010102 general mathematicsMathematics - Commutative Algebra16. Peace & justice[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Moduli spaceSegre embeddingMSC: Primary: 14J60; secondary: 14J45; 14D20Product (mathematics)[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]010307 mathematical physicsJournal of Pure and Applied Algebra
researchProduct

Group graded algebras and almost polynomial growth

2011

Let F be a field of characteristic 0, G a finite abelian group and A a G-graded algebra. We prove that A generates a variety of G-graded algebras of almost polynomial growth if and only if A has the same graded identities as one of the following algebras: (1) FCp, the group algebra of a cyclic group of order p, where p is a prime number and p||G|; (2) UT2G(F), the algebra of 2×2 upper triangular matrices over F endowed with an elementary G-grading; (3) E, the infinite dimensional Grassmann algebra with trivial G-grading; (4) in case 2||G|, EZ2, the Grassmann algebra with canonical Z2-grading.

Algebra and Number TheoryGraded algebra Polynomial identity Growth CodimensionsMathematics::Commutative AlgebraSubalgebraUniversal enveloping algebraGrowthPolynomial identityGraded algebraCodimensionsGraded Lie algebraFiltered algebraCombinatoricsSettore MAT/02 - AlgebraDifferential graded algebraDivision algebraAlgebra representationCellular algebraMathematics
researchProduct

The polyhedral Hodge number $h^{2,1}$ and vanishing of obstructions

2000

We prove a vanishing theorem for the Hodge number $h^{2,1}$ of projective toric varieties provided by a certain class of polytopes. We explain how this Hodge number also gives information about the deformation theory of the toric Gorenstein singularity derived from the same polytope. In particular, the vanishing theorem for $h^{2,1}$ implies that these deformations are unobstructed.

AlgebraPure mathematicsClass (set theory)Mathematics::Algebraic GeometrySingularityMathematics::Commutative AlgebraGeneral MathematicsDeformation theoryPolytope52B2014M25Mathematics::Symplectic GeometryMathematicsTohoku Mathematical Journal
researchProduct

2002

Generalizing cones over projective toric varieties, we present arbitrary toric varieties as quotients of quasiaffine toric varieties. Such quotient presentations correspond to groups of Weil divisors generating the topology. Groups comprising Cartier divisors define free quotients, whereas ℚ–Cartier divisors define geometric quotients. Each quotient presentation yields homogeneous coordinates. Using homogeneous coordinates, we express quasicoherent sheaves in terms of multigraded modules and describe the set of morphisms into a toric variety.

AlgebraPure mathematicsMathematics::Algebraic GeometryHomogeneous coordinatesMorphismMathematics::Commutative AlgebraGeneral MathematicsToric varietyAlgebraic geometryMathematics::Symplectic GeometryQuotientMathematicsMathematische Nachrichten
researchProduct

Geometry of the projectivization of ideals and applications to problems of birationality

2018

In this thesis, we interpret geometrically the torsion of the symmetric algebra of the ideal sheaf I_Z of a scheme Z defined by n+1 equations in an n-dimensional variety. This is equivalent to study the geometry of the projectivization of I_Z. The applications of this point of view concern, in particular, the topic of birational maps of the projective space of dimension 3 for which we construct explicit birational maps that have the same algebraic degree as their inverse, free and nearly-free curves for which we generalise a characterization of free curves by extending the notion of Milnor and Tjurina numbers. We tackle also the topic of homaloidal hypersurfaces, our original motivation, fo…

Algebraic geometrySyzygiesBirational mapsTransformations birationellesHypersurfaces homaloïdesGéométrie algébriqueHomaloidal hypersurfaces[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG][MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Commutative algebraSingularitiesSingularitésAlgèbre commutative
researchProduct

Splittings of Toric Ideals

2019

Let $I \subseteq R = \mathbb{K}[x_1,\ldots,x_n]$ be a toric ideal, i.e., a binomial prime ideal. We investigate when the ideal $I$ can be "split" into the sum of two smaller toric ideals. For a general toric ideal $I$, we give a sufficient condition for this splitting in terms of the integer matrix that defines $I$. When $I = I_G$ is the toric ideal of a finite simple graph $G$, we give additional splittings of $I_G$ related to subgraphs of $G$. When there exists a splitting $I = I_1+I_2$ of the toric ideal, we show that in some cases we can describe the (multi-)graded Betti numbers of $I$ in terms of the (multi-)graded Betti numbers of $I_1$ and $I_2$.

Binomial (polynomial)Betti numberPrime idealExistential quantificationCommutative Algebra (math.AC)01 natural sciencesCombinatoricsInteger matrixMathematics::Algebraic Geometry0103 physical sciencesFOS: MathematicsGraded Betti numbers; Graphs; Toric idealsMathematics - Combinatorics0101 mathematicsMathematics::Symplectic GeometryMathematicsAlgebra and Number TheorySimple graphIdeal (set theory)Mathematics::Commutative AlgebraGraded Betti numbers Graphs Toric ideals010102 general mathematicsMathematics::Rings and Algebras16. Peace & justiceMathematics - Commutative AlgebraSettore MAT/02 - AlgebraToric ideals13D02 13P10 14M25 05E40Settore MAT/03 - Geometria010307 mathematical physicsCombinatorics (math.CO)Graded Betti numbersGraphs
researchProduct

Computing with Rational Symmetric Functions and Applications to Invariant Theory and PI-algebras

2012

The research of the first named author was partially supported by INdAM. The research of the second, third, and fourth named authors was partially supported by Grant for Bilateral Scientific Cooperation between Bulgaria and Ukraine. The research of the fifth named author was partially supported by NSF Grant DMS-1016086.

Classical Invariant Theory05A15 05E05 05E10 13A50 15A72 16R10 16R30 20G05MacMahon Partition AnalysisHilbert SeriesRational symmetric functions classical invariant theory algebras with polynomial identity cocharacter sequenceMathematics - Rings and AlgebrasCommutative Algebra (math.AC)Mathematics - Commutative AlgebraRational Symmetric FunctionsAlgebras with Polynomial IdentitySettore MAT/02 - AlgebraRings and Algebras (math.RA)Noncommutative Invariant TheoryFOS: MathematicsCocharacter SequenceMathematics - CombinatoricsCombinatorics (math.CO)
researchProduct