Search results for "Commutator"

showing 10 items of 37 documents

Character sums and double cosets

2008

Abstract If G is a p-solvable finite group, P is a self-normalizing Sylow p-subgroup of G with derived subgroup P ′ , and Ψ is the sum of all the irreducible characters of G of degree not divisible by p, then we prove that the integer Ψ ( P ′ z P ′ ) is divisible by | P | for all z ∈ G . This answers a question of J. Alperin.

Discrete mathematicsFinite groupAlgebra and Number TheoryDegree (graph theory)Character theorySylow theoremsCommutator subgroupFinite groupsCombinatoricsCharacter (mathematics)IntegerDouble cosetsCosetCharacter theoryMcKay conjectureMathematicsJournal of Algebra
researchProduct

Nilpotent Lie algebras with 2-dimensional commutator ideals

2011

Abstract We classify all (finitely dimensional) nilpotent Lie k -algebras h with 2-dimensional commutator ideals h ′ , extending a known result to the case where h ′ is non-central and k is an arbitrary field. It turns out that, while the structure of h depends on the field k if h ′ is central, it is independent of k if h ′ is non-central and is uniquely determined by the dimension of h . In the case where k is algebraically or real closed, we also list all nilpotent Lie k -algebras h with 2-dimensional central commutator ideals h ′ and dim k h ⩽ 11 .

Discrete mathematicsPure mathematicsCommutatorNumerical AnalysisAlgebra and Number TheoryNilpotent Lie algebras Pairs of alternating formsNon-associative algebraCartan subalgebraKilling formCentral seriesPairs of alternating formsAdjoint representation of a Lie algebraNilpotent Lie algebrasLie algebraDiscrete Mathematics and CombinatoricsSettore MAT/03 - GeometriaGeometry and TopologyNilpotent groupMathematicsLinear Algebra and its Applications
researchProduct

Flux density at the airgap of small DC motors with different permanent-magnet poles

1993

Electromagnetic fieldPhysicslawMagnetBrushed DC electric motorMechanical engineeringCommutator (electric)DC motorFinite element methodShape controllaw.invention[1993] Digests of International Magnetics Conference
researchProduct

The probability that $x$ and $y$ commute in a compact group

2010

We show that a compact group $G$ has finite conjugacy classes, i.e., is an FC-group if and only if its center $Z(G)$ is open if and only if its commutator subgroup $G'$ is finite. Let $d(G)$ denote the Haar measure of the set of all pairs $(x,y)$ in $G \times G$ for which $[x,y] = 1$; this, formally, is the probability that two randomly picked elements commute. We prove that $d(G)$ is always rational and that it is positive if and only if $G$ is an extension of an FC-group by a finite group. This entails that $G$ is abelian by finite. The proofs involve measure theory, transformation groups, Lie theory of arbitrary compact groups, and representation theory of compact groups. Examples and re…

Haar measureGroup (mathematics)General MathematicsCommutator subgroupactions on Hausdorff spaces20C05 20P05 43A05Center (group theory)Group Theory (math.GR)Functional Analysis (math.FA)CombinatoricsMathematics - Functional AnalysisProbability of commuting pairConjugacy classCompact groupFOS: MathematicsComponent (group theory)compact groupCharacteristic subgroupAbelian groupMathematics - Group TheoryMathematics
researchProduct

Simple Facts Concerning Nambu Algebras

1998

A class of substitution equations arising in the extension of Jacobi identity for $n$-gebras is studied and solved. Graded bracket and cohomology adapted to the study of formal deformations are presented. New identities in the case of Nambu-Lie algebras are proved. The triviality in the Gerstenhaber sense of certain deformed n-skew-symmetric brackets, satisfying the Leibniz rule with respect to a star-product, is shown for n≥ 3.

Jacobi identityClass (set theory)CommutatorSubstitution (algebra)Statistical and Nonlinear PhysicsTrivialityCohomologyAlgebrasymbols.namesakeLeibniz integral ruleSimple (abstract algebra)symbolsMathematical PhysicsMathematicsCommunications in Mathematical Physics
researchProduct

Peiffer product and peiffer commutator for internal pre-crossed modules

2017

In this work we introduce the notions of Peiffer product and Peiffer commutator of internal pre-crossed modules over a fixed object B, extending the corresponding classical notions to any semi-abelian category C. We prove that, under mild additional assumptions on C, crossed modules are characterized as those pre-crossed modules X whose Peiffer commutator 〈X, X〉 is trivial. Furthermore we provide suitable conditions on C (fulfilled by a large class of algebraic varieties, including among others groups, associative algebras, Lie and Leibniz algebras) under which the Peiffer product realizes the coproduct in the category of crossed modules over B.

Large classPure mathematicssemi-abelian categoryCrossed module01 natural scienceslaw.inventionMathematics (miscellaneous)law0103 physical sciencesFOS: MathematicsSemi-abelian categoryCategory Theory (math.CT)0101 mathematicsAlgebraic numberAssociative propertyMathematicsPeiffer commutator010102 general mathematicsCoproductCommutator (electric)Mathematics - Category Theorycrossed moduleProduct (mathematics)010307 mathematical physicscrossed module; Peiffer commutator; semi-abelian category
researchProduct

Transport equations and quasi-invariant flows on the Wiener space

2010

Abstract We shall investigate on vector fields of low regularity on the Wiener space, with divergence having low exponential integrability. We prove that the vector field generates a flow of quasi-invariant measurable maps with density belonging to the space L log L . An explicit expression for the density is also given.

Mathematics(all)General MathematicsMathematical analysisIntegral representation theorem for classical Wiener spaceMalliavin calculusDensity estimationSpace (mathematics)Quasi-invariant flowsDivergenceCommutator estimateFlow (mathematics)Transport equationsWiener spaceClassical Wiener spaceVector fieldInvariant (mathematics)MathematicsBulletin des Sciences Mathématiques
researchProduct

A characteristic subgroup and kernels of Brauer characters

2005

If G is finite group and P is a Sylow p-subgroup of G, we prove that there is a unique largest normal subgroup L of G such that L ⋂ P = L ⋂ NG (P). If G is p-solvable, then L is the intersection of the kernels of the irreducible Brauer characters of G of degree not divisible by p.

Normal subgroupCombinatoricsMaximal subgroupTorsion subgroupBrauer's theorem on induced charactersGeneral MathematicsSylow theoremsCommutator subgroupCharacteristic subgroupFitting subgroupMathematicsBulletin of the Australian Mathematical Society
researchProduct

On the product of a nilpotent group and a group with non-trivial center

2007

Abstract It is proved that a finite group G = A B which is a product of a nilpotent subgroup A and a subgroup B with non-trivial center contains a non-trivial abelian normal subgroup.

Normal subgroupDiscrete mathematicsComplement (group theory)Algebra and Number TheorySoluble groupMetabelian groupCommutator subgroupCentral seriesFitting subgroupProduct of groupsCombinatoricsMathematics::Group TheorySolvable groupFactorized groupCharacteristic subgroupNilpotent groupMathematicsJournal of Algebra
researchProduct

A Characterization of the Class of Finite Groups with Nilpotent Derived Subgroup

2002

The class of all finite groups with nilpotent commutator subgroup is characterized as the largest subgroup-closed saturated formation 𝔉 for which the 𝔉-residual of a group generated by two 𝔉-subnormal subgroups is the subgroup generated by their 𝔉–residuals.

Normal subgroupDiscrete mathematicsMathematics::Group TheoryPure mathematicsMaximal subgroupGeneral MathematicsCommutator subgroupOmega and agemo subgroupNilpotent groupCharacteristic subgroupCentral seriesFitting subgroupMathematicsMathematische Nachrichten
researchProduct