Search results for "Commutator"
showing 10 items of 37 documents
Character sums and double cosets
2008
Abstract If G is a p-solvable finite group, P is a self-normalizing Sylow p-subgroup of G with derived subgroup P ′ , and Ψ is the sum of all the irreducible characters of G of degree not divisible by p, then we prove that the integer Ψ ( P ′ z P ′ ) is divisible by | P | for all z ∈ G . This answers a question of J. Alperin.
Nilpotent Lie algebras with 2-dimensional commutator ideals
2011
Abstract We classify all (finitely dimensional) nilpotent Lie k -algebras h with 2-dimensional commutator ideals h ′ , extending a known result to the case where h ′ is non-central and k is an arbitrary field. It turns out that, while the structure of h depends on the field k if h ′ is central, it is independent of k if h ′ is non-central and is uniquely determined by the dimension of h . In the case where k is algebraically or real closed, we also list all nilpotent Lie k -algebras h with 2-dimensional central commutator ideals h ′ and dim k h ⩽ 11 .
Flux density at the airgap of small DC motors with different permanent-magnet poles
1993
The probability that $x$ and $y$ commute in a compact group
2010
We show that a compact group $G$ has finite conjugacy classes, i.e., is an FC-group if and only if its center $Z(G)$ is open if and only if its commutator subgroup $G'$ is finite. Let $d(G)$ denote the Haar measure of the set of all pairs $(x,y)$ in $G \times G$ for which $[x,y] = 1$; this, formally, is the probability that two randomly picked elements commute. We prove that $d(G)$ is always rational and that it is positive if and only if $G$ is an extension of an FC-group by a finite group. This entails that $G$ is abelian by finite. The proofs involve measure theory, transformation groups, Lie theory of arbitrary compact groups, and representation theory of compact groups. Examples and re…
Simple Facts Concerning Nambu Algebras
1998
A class of substitution equations arising in the extension of Jacobi identity for $n$-gebras is studied and solved. Graded bracket and cohomology adapted to the study of formal deformations are presented. New identities in the case of Nambu-Lie algebras are proved. The triviality in the Gerstenhaber sense of certain deformed n-skew-symmetric brackets, satisfying the Leibniz rule with respect to a star-product, is shown for n≥ 3.
Peiffer product and peiffer commutator for internal pre-crossed modules
2017
In this work we introduce the notions of Peiffer product and Peiffer commutator of internal pre-crossed modules over a fixed object B, extending the corresponding classical notions to any semi-abelian category C. We prove that, under mild additional assumptions on C, crossed modules are characterized as those pre-crossed modules X whose Peiffer commutator 〈X, X〉 is trivial. Furthermore we provide suitable conditions on C (fulfilled by a large class of algebraic varieties, including among others groups, associative algebras, Lie and Leibniz algebras) under which the Peiffer product realizes the coproduct in the category of crossed modules over B.
Transport equations and quasi-invariant flows on the Wiener space
2010
Abstract We shall investigate on vector fields of low regularity on the Wiener space, with divergence having low exponential integrability. We prove that the vector field generates a flow of quasi-invariant measurable maps with density belonging to the space L log L . An explicit expression for the density is also given.
A characteristic subgroup and kernels of Brauer characters
2005
If G is finite group and P is a Sylow p-subgroup of G, we prove that there is a unique largest normal subgroup L of G such that L ⋂ P = L ⋂ NG (P). If G is p-solvable, then L is the intersection of the kernels of the irreducible Brauer characters of G of degree not divisible by p.
On the product of a nilpotent group and a group with non-trivial center
2007
Abstract It is proved that a finite group G = A B which is a product of a nilpotent subgroup A and a subgroup B with non-trivial center contains a non-trivial abelian normal subgroup.
A Characterization of the Class of Finite Groups with Nilpotent Derived Subgroup
2002
The class of all finite groups with nilpotent commutator subgroup is characterized as the largest subgroup-closed saturated formation 𝔉 for which the 𝔉-residual of a group generated by two 𝔉-subnormal subgroups is the subgroup generated by their 𝔉–residuals.