Search results for "Compact"
showing 10 items of 531 documents
Norms of harmonic projection operators on compact Lie groups
1988
In order to simplify the notation, we will assume throughout that G is connected, simply connected and semisimple. Sharp estimates for vp(z 0 when G = SU(2) have been obtained by Sogge [6], who proved that Vp(Zt) ~ d~ tl/v), where y(t) is the function which is affine on [1/2, 3/4] and on [3/4, 1] and is such that 7(1/2)=0, 7(3/4)=1/4, 7(1)=1. Two results in the literature give crucial estimates from below for vp(n) in the general case. The first estimate concernes the LP'-norm of the character X, : if ,~, is the highest weight of n and 0 is half the sum of the positive roots, then II x=llp,--> + 011-dimG/p" (1.2)
Compactness of a conformal boundary of the Euclidean unit ball
2011
We study conformal metrics d‰ on the Euclidean unit ball B n : We assume that either the density ‰ associated with the metric d‰ satisfies a logarithmic volume growth condition for small balls or that ‰ satisfies a Harnack inequality and a suitable sub-Euclidean volume growth condition. We prove that the ‰-boundary @‰ B n is homeomorphic to S ni1 if and only if @‰ B n is compact. In the planar case, the compactness of @‰ B 2 is further equivalent to local connectivity of the ‰-boundary together with the boundedness of (B 2 ;d‰):
DISPOSITIVO E METODO PER IL CONDIZIONAMENTO DELL’ARIA
2012
About Compactness of Faddeev Integral Equations for Three Charged Particles
1999
Momentum space three-body integral equations of the Faddeev type can not be used for Coulomb-like potentials, for energies above the breakup threshold. The reason is the occurrence of singularities in their kernels which destroy the compactness properties known to exist for purely short-range interactions. Using the rigorously equivalent formulation in terms of an effective-two- body theory, we prove that the nondiagonal kernels occurring therein possess on and off the energy shell only integrable singularities, provided all three particles have charges of the same sign (ie., only repulsive Coulomb interactions). In contrast, if some of the charges have opposite signs the nondiagonal kernel…
Compaction of Open-Graded HMAs Evaluated by a Fuzzy Clustering Technique
2015
The aim of this paper is the proposal of an expeditious procedure to be used during the execution of an asphalt layer for improving the compaction task. This procedure, based on a fuzzy clustering technique, starts from the knowledge of some information recorded by ordinary measuring instruments and provides an aid to the decision-maker on the number of roller passes needed to achieve a specific density at a certain temperature. This result can be deduced with great rapidity during the paving operations on site without waiting for the time spent in the core extraction and in the subsequent laboratory analysis. In this way it is possible to identify more precisely which aspects of the execut…
Recensione: MR2928500 Cascales, Bernardo; Kalenda, Ondřej F. K.; Spurný, Jiří A quantitative version of James's compactness theorem. Proc. Edinb. Mat…
2013
Paper review
Global convergence and rate of convergence of a method of centers
1994
We consider a method of centers for solving constrained optimization problems. We establish its global convergence and that it converges with a linear rate when the starting point of the algorithm is feasible as well as when the starting point is infeasible. We demonstrate the effect of the scaling on the rate of convergence. We extend afterwards, the stability result of [5] to the infeasible case anf finally, we give an application to semi-infinite optimization problems.
Iterative approximation to a coincidence point of two mappings
2015
In this article two methods for approximating the coincidence point of two mappings are studied and moreover, rates of convergence for both methods are given. These results are illustrated by several examples, in particular we apply such results to study the convergence and their rate of convergence of these methods to the solution of a nonlinear integral equation and of a nonlinear differential equation.
Lattice-Boltzmann and finite difference simulations for the permeability of three-dimensional porous media
2002
Numerical micropermeametry is performed on three dimensional porous samples having a linear size of approximately 3 mm and a resolution of 7.5 $\mu$m. One of the samples is a microtomographic image of Fontainebleau sandstone. Two of the samples are stochastic reconstructions with the same porosity, specific surface area, and two-point correlation function as the Fontainebleau sample. The fourth sample is a physical model which mimics the processes of sedimentation, compaction and diagenesis of Fontainebleau sandstone. The permeabilities of these samples are determined by numerically solving at low Reynolds numbers the appropriate Stokes equations in the pore spaces of the samples. The physi…
A Function Algebra Providing New Mergelyan Type Theorems in Several Complex Variables
2019
For compact sets $K\subset \mathbb C^{d}$, we introduce a subalgebra $A_{D}(K)$ of $A(K)$, which allows us to obtain Mergelyan type theorems for products of planar compact sets as well as for graphs of functions.