Search results for "Compactness"

showing 10 items of 31 documents

The forgotten mathematical legacy of Peano

2019

International audience; The formulations that Peano gave to many mathematical notions at the end of the 19th century were so perfect and modern that they have become standard today. A formal language of logic that he created, enabled him to perceive mathematics with great precision and depth. He described mathematics axiomatically basing the reasoning exclusively on logical and set-theoretical primitive terms and properties, which was revolutionary at that time. Yet, numerous Peano’s contributions remain either unremembered or underestimated.

PeanoPeano's axioms of arithmeticPeano's counterexamplesWeierstrass maximum theoremabstract measuresGeneral MathematicsClosure (topology)tangencyinterioranti-distributive familiesfoundationdefinitions by abstractionlinear differential equationsaxiom of choiceLogical conjunctionPeano axiomsproofFormal languageAxiom of choiceMSC: Primary 01A55 01A6003-03 26-03 28-03 34-03 54-03; Secondary15A75 26A03 26A2426B25 26B05 28A1228A15 28A75.affine exterior algebra[MATH]Mathematics [math]reduction formulaeMathematicsnonlinear differential equationsoptimality conditionsdifferentiation of measuressweeping-tangent theoremPeano's axioms of geometryPeano's filling curvereduction of mathematics to setssurface areaclosuremean value theoremDirichlet functionNonlinear differential equationssubtangentsEpistemologymeasure theoryplanar measurelower and upper limits of setsdistributive familiescompactnessmathematical definitions1886 existence theoremdifferentiabilityDissertationes Mathematicae
researchProduct

Completeness number of families of subsets of convergence spaces

2016

International audience; Compactoid and compact families generalize both convergent filters and compact sets. This concept turned out to be useful in various quests, like Scott topologies, triquotient maps and extensions of the Choquet active boundary theorem.The completeness number of a family in a convergence space is the least cardinality of collections of covers for which the family becomes complete. 0-completeness amounts to compactness, finite completeness to relative local compactness and countable completeness to Čech completeness. Countably conditional countable completeness amounts to pseudocompleteness of Oxtoby. Conversely, each completeness class of families can be represented a…

Discrete mathematics[ MATH ] Mathematics [math]CompletenessClass (set theory)Complete partial orderCompactness010102 general mathematicsBoundary (topology)Characterization (mathematics)01 natural sciences010101 applied mathematicsConvergence theoryCompact spaceCardinalityCompleteness (order theory)Countable setGeometry and Topology0101 mathematics[MATH]Mathematics [math]Mathematics
researchProduct

Recensione: MR3198633 Reviewed Olszowy, Leszek A family of measures of noncompactness in the space L1loc(R+) and its application to some nonlinear Vo…

2014

Settore MAT/05 - Analisi MatematicaMeasure of noncompactness Nonlinear Volterra integral equation
researchProduct

Eigenvectors of k–ψ-contractive wedge operators

AbstractWe present new boundary conditions under which the fixed point index of a strict-ψ-contractive wedge operator is zero. Then we investigate eigenvalues and corresponding eigenvectors of k–ψ-contractive wedge operators.

Radial setFixed point indexψ-condensing operatorMeasure of noncompactness k–ψ-contractive operatorWedgeRetractionApplied Mathematics Letters
researchProduct

Proper $k$-ball-contractive mappings in $C_b^m[0, + infty)$

2021

In this paper we deal with the Banach space C-b(m)[0,+infinity] of all m-times continuously derivable, bounded with all derivatives up to the order m, real functions defined on [0, +infinity). We prove, for any epsilon > 0, the existence of a new proper k-ball-contractive retraction with k < 1+epsilon of the closed unit ball of the space onto its boundary, so that the Wosko constant W-gamma(C-b(m)[0,+infinity]) is equal to 1.

Settore MAT/05 - Analisi MatematicaApplied Mathematicsmeasure of noncompactnessk-ball-contractionproper mappingAnalysisRetraction
researchProduct

Eigenvectors of k-psi-contractive wedge operators

2008

We present new boundary conditions under which the fixed point index of a strict-$\psi$-contractive wedge operator is zero. Then we investigate eigenvalues and corresponding eigenvectors of k-$\psi$-contractive wedge operators.

Settore MAT/05 - Analisi MatematicaMeasure of noncompactness k-$\psi$-contractiove operator \sep $\psi$-condensing operator \sep wedge.
researchProduct

Schaefer–Krasnoselskii fixed point theorems using a usual measure of weak noncompactness

2012

Abstract We present some extension of a well-known fixed point theorem due to Burton and Kirk [T.A. Burton, C. Kirk, A fixed point theorem of Krasnoselskii–Schaefer type, Math. Nachr. 189 (1998) 423–431] for the sum of two nonlinear operators one of them compact and the other one a strict contraction. The novelty of our results is that the involved operators need not to be weakly continuous. Finally, an example is given to illustrate our results.

Discrete mathematicsQuantitative Biology::Neurons and CognitionPicard–Lindelöf theoremApplied MathematicsFixed-point theoremFixed-point propertyKrasnoselskii fixed point theoremSchauder fixed point theoremNonlinear integral equationsMeasure of weak noncompactnessBrouwer fixed-point theoremKakutani fixed-point theoremContraction (operator theory)Nonlinear operatorsAnalysisMathematicsJournal of Differential Equations
researchProduct

A Mountain Pass Theorem for a Suitable Class of Functions

2009

Class (set theory)geographyPure mathematicsgeography.geographical_feature_categorycritical pointsGeneral Mathematicsthree solutions58E30two-point boundary value problemPalais-Smale conditionmountain pass34B1558E05A mountain pass theoremCombinatoricsPalais–Smale compactness conditionSettore MAT/05 - Analisi MatematicaMountain pass theoremMountain pass49J4047J30Mathematics
researchProduct

$$\mathscr {K}$$-Convergence of Finite Volume Solutions of the Euler Equations

2020

We review our recent results on the convergence of invariant domain-preserving finite volume solutions to the Euler equations of gas dynamics. If the classical solution exists we obtain strong convergence of numerical solutions to the classical one applying the weak-strong uniqueness principle. On the other hand, if the classical solution does not exist we adapt the well-known Prokhorov compactness theorem to space-time probability measures that are generated by the sequences of finite volume solutions and show how to obtain the strong convergence in space and time of observable quantities. This can be achieved even in the case of ill-posed Euler equations having possibly many oscillatory s…

symbols.namesakeFinite volume methodSpacetimeCompactness theoremsymbolsApplied mathematicsObservableUniquenessInvariant (physics)Euler equationsMathematicsProbability measure
researchProduct

On Boundary Conditions for Wedge Operators on Radial Sets

2008

We present a theorem about calculation of fixed point index for k-$\psi$-contractive operators with 0 < k <1 defined on a radial set of a wedge of an infinite dimensional Banach space. Then results on the existence of eigenvectors and nonzero fixed points are obtained.

Control and OptimizationRadial setMathematical analysisBanach spaceFixed-point indexMeasure of noncompactness k-$\psi$-contraction wedge relative fixed point index radial set.Fixed pointFixed-point propertyWedge (geometry)Computer Science ApplicationsSchauder fixed point theoremSettore MAT/05 - Analisi MatematicaSignal ProcessingAnalysisEigenvalues and eigenvectorsMathematicsNumerical Functional Analysis and Optimization
researchProduct