Search results for "Complexity"
showing 10 items of 1094 documents
NP-completeness of the hamming salesman problem
1985
It is shown that the traveling salesman problem, where cities are bit strings with Hamming distances, is NP-complete.
Graph connectivity and monadic NP
2002
Ehrenfeucht games are a useful tool in proving that certain properties of finite structures are not expressible by formulas of a certain type. In this paper a new method is introduced that allows the extension of a local winning strategy for Duplicator, one of the two players in Ehrenfeucht games, to a global winning strategy. As an application it is shown that graph connectivity cannot be expressed by existential second-order formulas, where the second-order quantification is restricted to unary relations (monadic NP), even, in the presence of a built-in linear order. As a second application it is stated, that, on the other hand, the presence of a linear order increases the power of monadi…
First-order expressibility of languages with neutral letters or: The Crane Beach conjecture
2005
A language L over an alphabet A is said to have a neutral letter if there is a letter [email protected]?A such that inserting or deleting e's from any word in A^* does not change its membership or non-membership in L. The presence of a neutral letter affects the definability of a language in first-order logic. It was conjectured that it renders all numerical predicates apart from the order predicate useless, i.e., that if a language L with a neutral letter is not definable in first-order logic with linear order, then it is not definable in first-order logic with any set N of numerical predicates. Named after the location of its first, flawed, proof this conjecture is called the Crane Beach …
On a Conjecture on Bidimensional Words
2003
We prove that, given a double sequence w over the alphabet A (i.e. a mapping from Z2 to A), if there exists a pair (n0, m0) ∈ Z2 such that pw(n0, m0) < 1/100n0m0, then w has a periodicity vector, where pw is the complexity function in rectangles of w.
Approximate convex hull of affine iterated function system attractors
2012
International audience; In this paper, we present an algorithm to construct an approximate convex hull of the attractors of an affine iterated function system (IFS). We construct a sequence of convex hull approximations for any required precision using the self-similarity property of the attractor in order to optimize calculations. Due to the affine properties of IFS transformations, the number of points considered in the construction is reduced. The time complexity of our algorithm is a linear function of the number of iterations and the number of points in the output convex hull. The number of iterations and the execution time increases logarithmically with increasing accuracy. In additio…
Dichotomies properties on computational complexity of S-packing coloring problems
2015
This work establishes the complexity class of several instances of the S -packing coloring problem: for a graph G , a positive integer k and a nondecreasing list of integers S = ( s 1 , ? , s k ) , G is S -colorable if its vertices can be partitioned into sets S i , i = 1 , ? , k , where each S i is an s i -packing (a set of vertices at pairwise distance greater than s i ). In particular we prove a dichotomy between NP-complete problems and polynomial-time solvable problems for lists of at most four integers.
Understanding Quantum Algorithms via Query Complexity
2017
Query complexity is a model of computation in which we have to compute a function $f(x_1, \ldots, x_N)$ of variables $x_i$ which can be accessed via queries. The complexity of an algorithm is measured by the number of queries that it makes. Query complexity is widely used for studying quantum algorithms, for two reasons. First, it includes many of the known quantum algorithms (including Grover's quantum search and a key subroutine of Shor's factoring algorithm). Second, one can prove lower bounds on the query complexity, bounding the possible quantum advantage. In the last few years, there have been major advances on several longstanding problems in the query complexity. In this talk, we su…
On Physical Problems that are Slightly More Difficult than QMA
2013
We study the complexity of computational problems from quantum physics. Typically, they are studied using the complexity class QMA (quantum counterpart of NP) but some natural computational problems appear to be slightly harder than QMA. We introduce new complexity classes consisting of problems that are solvable with a small number of queries to a QMA oracle and use these complexity classes to quantify the complexity of several natural computational problems (for example, the complexity of estimating the spectral gap of a Hamiltonian).
The Alternating BWT: an algorithmic perspective
2020
Abstract The Burrows-Wheeler Transform (BWT) is a word transformation introduced in 1994 for Data Compression. It has become a fundamental tool for designing self-indexing data structures, with important applications in several areas in science and engineering. The Alternating Burrows-Wheeler Transform (ABWT) is another transformation recently introduced in Gessel et al. (2012) [21] and studied in the field of Combinatorics on Words. It is analogous to the BWT, except that it uses an alternating lexicographical order instead of the usual one. Building on results in Giancarlo et al. (2018) [23] , where we have shown that BWT and ABWT are part of a larger class of reversible transformations, …
Minimal forbidden words and symbolic dynamics
1996
We introduce a new complexity measure of a factorial formal language L: the growth rate of the set of minimal forbidden words. We prove some combinatorial properties of minimal forbidden words. As main result we prove that the growth rate of the set of minimal forbidden words for L is a topological invariant of the dynamical system defined by L.