Search results for "Complexity"

showing 10 items of 1094 documents

Error-Free Affine, Unitary, and Probabilistic OBDDs

2018

We introduce the affine OBDD model and show that zero-error affine OBDDs can be exponentially narrower than bounded-error unitary and probabilistic OBDDs on certain problems. Moreover, we show that Las Vegas unitary and probabilistic OBDDs can be quadratically narrower than deterministic OBDDs. We also obtain the same results for the automata versions of these models.

Discrete mathematicsQuadratic growthLas vegas010102 general mathematicsProbabilistic logic02 engineering and technologyComputer Science::Computational ComplexityComputer Science::Artificial Intelligence01 natural sciencesUnitary stateAutomatonSuccinctnessComputer Science::Logic in Computer Science0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingAffine transformation0101 mathematicsComputer Science::DatabasesZero errorMathematics
researchProduct

Improved constructions of quantum automata

2008

We present a simple construction of quantum automata which achieve an exponential advantage over classical finite automata. Our automata use \frac{4}{\epsilon} \log 2p + O(1) states to recognize a language that requires p states classically. The construction is both substantially simpler and achieves a better constant in the front of \log p than the previously known construction of Ambainis and Freivalds (quant-ph/9802062). Similarly to Ambainis and Freivalds, our construction is by a probabilistic argument. We consider the possibility to derandomize it and present some results in this direction.

Discrete mathematicsQuantum PhysicsFinite-state machineTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESGeneral Computer ScienceFOS: Physical sciencesω-automatonComputer Science::Computational ComplexityNonlinear Sciences::Cellular Automata and Lattice GasesMobile automatonTheoretical Computer ScienceQuantum finite automataQuantum computationAutomata theoryQuantum finite automataNondeterministic finite automatonExponential advantageQuantum Physics (quant-ph)Computer Science::Formal Languages and Automata TheoryMathematicsQuantum computerQuantum cellular automatonComputer Science(all)
researchProduct

Symmetry-assisted adversaries for quantum state generation

2011

We introduce a new quantum adversary method to prove lower bounds on the query complexity of the quantum state generation problem. This problem encompasses both, the computation of partial or total functions and the preparation of target quantum states. There has been hope for quite some time that quantum state generation might be a route to tackle the $backslash$sc Graph Isomorphism problem. We show that for the related problem of $backslash$sc Index Erasure our method leads to a lower bound of $backslash Omega(backslash sqrt N)$ which matches an upper bound obtained via reduction to quantum search on $N$ elements. This closes an open problem first raised by Shi [FOCS'02]. Our approach is …

Discrete mathematicsQuantum PhysicsReduction (recursion theory)Informatique généraleOpen problemMultiplicative function0102 computer and information sciences01 natural sciencesUpper and lower boundsComputer Science - Computational ComplexityRepresentation theory of the symmetric group010201 computation theory & mathematicsQuantum state0103 physical sciencesGraph isomorphism010306 general physicsQuantumMathematics
researchProduct

2014

Is there a general theorem that tells us when we can hope for exponential speedups from quantum algorithms, and when we cannot? In this paper, we make two advances toward such a theorem, in the black-box model where most quantum algorithms operate. First, we show that for any problem that is invariant under permuting inputs and outputs (like the collision or the element distinctness problems), the quantum query complexity is at least the 9 th root of the classical randomized query complexity. This resolves a conjecture of Watrous from 2002. Second, inspired by recent work of O’Donnell et al. and Dinur et al., we conjecture that every bounded low-degree polynomial has a “highly influential” …

Discrete mathematicsQuantum sortQuantum capacityComputer Science::Computational ComplexityTheoretical Computer ScienceCombinatoricsComputational Theory and MathematicsBQPQuantum no-deleting theoremQuantum algorithmQuantum walkComputer Science::DatabasesQuantum complexity theoryMathematicsQuantum computerTheory of Computing
researchProduct

Any AND-OR Formula of Size N Can Be Evaluated in Time $N^{1/2+o(1)}$ on a Quantum Computer

2007

Consider the problem of evaluating an AND-OR formula on an $N$-bit black-box input. We present a bounded-error quantum algorithm that solves this problem in time $N^{1/2+o(1)}$. In particular, approximately balanced formulas can be evaluated in $O(\sqrt{N})$ queries, which is optimal. The idea of the algorithm is to apply phase estimation to a discrete-time quantum walk on a weighted tree whose spectrum encodes the value of the formula.

Discrete mathematicsQuantum t-designComputational complexity theoryGeneral Computer ScienceGeneral MathematicsSpectrum (functional analysis)Value (computer science)0102 computer and information sciencesTree (graph theory)01 natural sciencesCombinatoricsTree (descriptive set theory)Discrete time and continuous time010201 computation theory & mathematics0103 physical sciencesQuantum operationQuantum phase estimation algorithmQuantum Fourier transformQuantum walkQuantum algorithm010306 general physicsMathematicsQuantum computerSIAM Journal on Computing
researchProduct

Circular sturmian words and Hopcroft’s algorithm

2009

AbstractIn order to analyze some extremal cases of Hopcroft’s algorithm, we investigate the relationships between the combinatorial properties of a circular sturmian word (x) and the run of the algorithm on the cyclic automaton Ax associated to (x). The combinatorial properties of words taken into account make use of sturmian morphisms and give rise to the notion of reduction tree of a circular sturmian word. We prove that the shape of this tree uniquely characterizes the word itself. The properties of the run of Hopcroft’s algorithm are expressed in terms of the derivation tree of the automaton, which is a tree that represents the refinement process that, in the execution of Hopcroft’s alg…

Discrete mathematicsReduction (recursion theory)Fibonacci numberGeneral Computer ScienceHopcroft'algorithmSturmian wordSturmian wordSturmian morphismsTheoretical Computer ScienceCombinatoricsTree (descriptive set theory)TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESComputer Science::Discrete MathematicsDeterministic automatonHopcroft’s minimization algorithmCircular sturmian wordsTree automatonDeterministic finite state automataTime complexityAlgorithmComputer Science::Formal Languages and Automata TheoryWord (group theory)Computer Science(all)MathematicsTheoretical Computer Science
researchProduct

Efficient algorithm for learning simple regular expressions from noisy examples

1994

We present an efficient algorithm for finding approximate repetitions in a given sequence of characters. First, we define a class of simple regular expressions which are of star-height one and do not contain union operations, and a stochastic mutation process of a given length over a string of characters. Then, assuming that a given string of characters is obtained corrupted by the defined mutation process from some long enough word generated by a simple regular expression, we try to restore the expression. We prove that to within some reasonable accuracy it is always possible if the length of the mutation process is bounded comparing to the length of the example. We provide an algorithm by…

Discrete mathematicsRegular languageComputer scienceBounded functionString (computer science)Mutation (genetic algorithm)Edit distanceRegular expressionExpression (computer science)Time complexity
researchProduct

Locality of order-invariant first-order formulas

1998

A query is local if the decision of whether a tuple in a structure satisfies this query only depends on a small neighborhood of the tuple. We prove that all queries expressible by order-invariant first-order formulas are local.

Discrete mathematicsRelational databaseComputer Science::Information RetrievalInformationSystems_INFORMATIONSTORAGEANDRETRIEVALLocalityStructure (category theory)InformationSystems_DATABASEMANAGEMENTFirst orderComplexity classOrder (group theory)Invariant (mathematics)TupleAlgorithmComputer Science::DatabasesMathematics
researchProduct

Error-Free Affine, Unitary, and Probabilistic OBDDs

2021

We introduce the affine OBDD model and show that zero-error affine OBDDs can be exponentially narrower than bounded-error unitary and probabilistic OBDDs on certain problems. Moreover, we show that Las-Vegas unitary and probabilistic OBDDs can be quadratically narrower than deterministic OBDDs. We also obtain the same results for the automata counterparts of these models.

Discrete mathematicsState complexityComputer Science::Logic in Computer ScienceComputer Science (miscellaneous)Probabilistic logicAffine transformationComputer Science::Computational ComplexityComputer Science::Artificial IntelligenceUnitary stateComputer Science::DatabasesMathematicsZero errorInternational Journal of Foundations of Computer Science
researchProduct

Lower Bounds and Hierarchies for Quantum Memoryless Communication Protocols and Quantum Ordered Binary Decision Diagrams with Repeated Test

2017

We explore multi-round quantum memoryless communication protocols. These are restricted version of multi-round quantum communication protocols. The “memoryless” term means that players forget history from previous rounds, and their behavior is obtained only by input and message from the opposite player. The model is interesting because this allows us to get lower bounds for models like automata, Ordered Binary Decision Diagrams and streaming algorithms. At the same time, we can prove stronger results with this restriction. We present a lower bound for quantum memoryless protocols. Additionally, we show a lower bound for Disjointness function for this model. As an application of communicatio…

Discrete mathematicsSublinear functionComputational complexity theory010102 general mathematics0102 computer and information sciencesFunction (mathematics)01 natural sciencesUpper and lower boundsCombinatorics010201 computation theory & mathematicsQuantum algorithm0101 mathematicsQuantum information scienceCommunication complexityQuantum computerMathematics
researchProduct